Питание, пища, корм
Несмотря на большое число исследований, нет единого мнения о термине «Пищевые волокна». Наряду с комплексом, формирующим клеточные стенки одревесневших растений, состоящим из целлюлозы, гемицел-люлоз и лигнина, плохо растворимым в воде и медленно гидролиз уемьм, к ПВ относят также пектиновые вещества и ряд водорастворимых полисахар идов.
М.С. Дудкиным и Л.Ф. Щелкуновым предложена [22] классификация ПВ, согласно которой ПВ можно разделить на однородные, т.е. сформированные из биополимеров одного вида (целлюлоза, лигнин, пектин), и неоднородные, т.е. сформированные из биополимеров двух или нескольких видов (холоцеллюлозы, целлюлозолигнины, гемицеллюлозолигнины и др.). Предложено также классифицировать ПВ по источникам сырья, растворимости в воде и другим показателям.
Состояние потребления ПВ изучено во многих странах [38, 41, 43, 49]. Немецкие авторы рассчитали, что дети в возрасте от 2 до 5 лет потребляли 3,0-4,3 г, а школьники — 4,1-6,7 г грубых волокон в день, что соответствовало (во всех возрастных группах) примерно всего лишь 2,5 г на 1000 ккал рациона. По сооб
щению Комитета по питанию Американской педиатрической академии, дети в США потребляют ПВ в весьма малых количествах. В Германии общее потребление ПВ составляло (в г/сут): 22,0 — у рабочих; 24,8 — у студентов; 21,7 — у преподавателей; 17,6 — у служащих. Поступление с пищей ПВ у всех групп, в особенности у рабочих, происходило за счет злаковых, а также овощей и фруктов.
» В Дании взрослое население в возрасте от 25 до 65 лет потребляло ежедневно в среднем 24,0±6,9 г ПВ, причем 32% ПВ приходится на долю хлеба и других злаковых, 17% — на долю картофеля, 24% ~ на долю других овощей и 15% — на долю фруктов. Потребление пектина оказалось равным 2,4±0,8 г в день; это количество обеспечивалось хлебом и злаковыми — 7%, картофелем — 14%, другими овощами — 34% и фруктамч — 40%. Абсолютное потребление ПВ оказалось большим у мужчин — 27 г против 21,3 г в день у женщин. Потребление ПВ в рабочие дни оказалось большим, чем в выходные[50].
Суммарное содержание ПВ в суточных рационах питания населения Донбасса колебалось в среднем в пределах 24,0-26,3 г, в том числе клетчатки в пределах 5,9-6,7 г, пектина — 2,0-2,7 г, гемицеллюлоз — 16,1-16,9 г [2].
В соответствии с программой ФАО была проведена проверка обеспечения ПВ (в пересчете на 1 человека) в 38 странах всех регионов мира. Сравнивали как суммарное, так и потребление волокон из отдельных источников: овощей, фруктов, пшеницы, кукурузы, риса и зерновых в целом. Наибольшее количество ПВ
ОБЗОРЫ
поступало из продуктов зернового происхождения и в меньшей степени — из овощных и фруктовых продуктов.
В качестве источников ПВ привлекают внимание вторичные продукты переработки зерна (отруби, цветочные пленки), винограда, фруктов, сахарной свеклы, овощей. Ими могут быть и нетрадиционные для пищевой промышленности виды сырья: травы [20], древесина и древесная зелень [13]. Так, в Одесской государственной академии пищевых технологий (ОГАПТ) им. М.В. Ломоносова разработаны технологии выделения ПВ из пшеничных и ржаных отрубей, основанные на кислотном, щелоче-кислотном, детергентном и ферментативном методах [19]. Выход ПВ зависит как от технологии их выделения, так и от вида сырья (табл.1).
Таблица 1 Содержание ПВ в отрубях в зависимости от метода выделения
Метод выделения |
Содержание ПВ, % | |
отруби | ||
пшеничные |
ржаные | |
Кислотный |
33,21 |
21,51 |
Щелоче-ки спотный |
26,52 |
17.06 |
Кислотно-детергентный |
16,10 |
11,93 |
Ферментативный |
45,92 |
35,55 |
При реализации технологии выделения ПВ идет не только растворение сопутствующих низкомолекулярных веществ, но и гидролиз крахмала и части геми-целлюлоз. На основе данных дифференциальной ИК-спектроскопии установлено, что одновременно происходит уплотнение структуры целлюлозы, а по результатам рентгеноструктурного анализа — увеличение индекса кристалличности целлюлозы. Одновременно имеет место деструкция целлюлозы в аморфной ее части, что способствует снижению внутренних напряжений и декристаллизации.
Л.Ф. Щелкуновым проведено выделение ПВ из кожицы виноградных ягод, семян и лозы винограда [16]. Показано, что содержание полисахаридов и лигнина в полученных ПВ составляет 71-82% и зависит от метода, технологии выделения и вида исходного сьфья.
Описана технология выделения ПВ из измельченных бобовых трав (люцерны, клевера) кислотным методом [20].
Изучена технология и дана характеристика поли-сахаридо-лигнинного комплекса, выделенного из измельченной древесины и древесной зелени [13].
Среди свойств,характерных для ПВ, целесообразно изучение их сорбционной способности, являющейся интегральной величиной ионитных свойств полисахаридов и лигнина различной степени межмолекулярной упаковки.
Прежде всего представляет интерес изучение сорбции пищевыми волокнами экологически вредных веществ (ЭВВ), в том числе ионов тяжелых металлов, нитратов, нитритов, пестицидов, фенолов и других
веществ. Это позволит далее определить более конкретную роль ПВ как энтеросорбентов в процессе питания и их воздействие на здоровье человека.
Авторами дана оценка [16, 17] способности ПВ, выделенных из вторичных продуктов переработки винограда, сорбировать ЭВВ из их водных растворов. Оказалось, что изученные виды ПВ способны связывать 0,1-5,0 мг/г ПВ фенола, формальдегида, свинца, нитратов и др.
Для выяснения природы сорбционного процесса , идущего в массе ПВ, авторами рассмотрена сорбция ЭВВ отдельно выделенными биополимерами ПВ. С этой целью по обычной методике [25] из ПВ жмыха виноградных семян (ЖВС) были извлечены целлюлоза, лигнин, целлолигнин и дана оценка их сорбционной активности [18, 24]. Сравнительный анализ показал, что лигнин (0,68-1,04 мг/г) и целлолигнин (0,59-1,01 мг/г) ПВ ЖВС значительно превосходят целлюлозу (0,19-0,29 мг/г) ПВ ЖВС по способности связывать фенол из водных растворов. Целлюлоза ПВ ЖВС и по способности связывать ионы свинца (0,1-0,23 мг/г) заметно уступает другим биополимерам ПВ ЖВС (0,56-0,71 мг/г).
Механизм связывания биополимерами различных адсорбатов неидентичен. Положительно заряженные ионы свинца сорбируются противоположно заряженными функциональными группами полимеров ПВ, в частности гидроксильными и карбоксильными группами лигнина. Фенол, обладая гидроксильной группой, может связываться с веществами ароматической природы лигнинного комплекса, образуя химические соединения и уменьшая тем самым концентрацию фенола в водных растворах. Не следует также недооценивать процессы физической сорбции, которые могут быть связаны с наличием высокоразвитой внутренней поверхности.