Курс лекций по теории вероятностей
Рефераты >> Математика >> Курс лекций по теории вероятностей

Теорема 30 (ЗБЧ Бернулли).

Пусть А — событие, которое может произойти в любом из n независимых испытаний с одной и той же вероятностью P(А). Пусть vn(А) — число осуществлений события А в n испытаниях. Тогда

При этом для любого ε > 0

13.4 Примеры использования ЗБЧ и неравенства Чебышёва

Пример 46.

Монета подбрасывается 10 000 раз. Оценить вероятность того, что частота выпадения герба отличается от вероятности более чем на одну сотую.

Требуется оценить , где —число выпадений герба, а — независимые с. в., имеющие распределение Бернулли с параметром 1/2, равные «числу гербов, выпавших при i-м подбрасывании» (то есть единице, если выпал герб и нулю иначе, или индикатору того, что выпал герб). Поскольку , искомая оценка сверху выглядит так:

Иначе говоря, неравенство Чебышёва позволяет заключить, что, в среднем, не более чем в четверти случаев при 10 000 подбрасываниях монеты частота выпадения герба будет отличаться от 1/2 более чем на одну сотую. Мы увидим, насколько это грубая оценка, когда познакомимся с центральной предельной теоремой.

Пример 47.

Пусть — последовательность случайных величин, дисперсии которых ограничены одной и той же постоянной С, а ковариации любых с. в. и (), не являющихся соседними в последовательности, равны нулю. Удовлетворяет ли эта последовательность ЗБЧ?

Воспользуемся неравенством (13) и свойством 12:

Но для i < j, по условию, , если . Следовательно, в сумме равны нулю все слагаемые кроме, может быть, (их ровно n -1 штука).

Оценим каждое из них, используя одно из свойств коэффициента корреляции

(по условию задачи)

при , т.е. последовательность удовлетворяет ЗБЧ.

. Из этой первой лекции по теории вероятностей я запомнил только полузнакомый термин «математическое ожидание». Незнакомец употреблял этот термин неоднократно, и каждый раз я представлял себе большое помещение, вроде зала ожидания, с кафельным полом, где сидят люди с портфелями и бюварами и, подбрасывая время от времени к потолку монетки и бутерброды, сосредоточенно чего-то ожидают. До сих пор я часто вижу это во сне. Но тут незнакомец оглушил меня звонким термином «предельная теорема Муавра — Лапласа» и сказал, что все это к делу не относится.

Аркадий и Борис Стругацкие, Стажеры

Раздел 14. ЦПТ (центральная предельная теорема)

14.1 Как быстро сходится к ?

Пусть, как в законе больших чисел в форме Чебышёва, — сумма n независимых и одинаково распределенных величин с конечной дисперсией. Тогда, в силу ЗБЧ, с ростом n. Или, после приведения к общему знаменателю,

Если при делении на n мы получили в пределе нуль (в смысле некоторой, все равно какой, сходимости), резонно задать себе вопрос: а не слишком ли на «много» мы поделили? Нельзя ли поделить на что-нибудь, растущее к бесконечности медленнее, чем n, чтобы получить в пределе не нуль (и не бесконечность, само собой)?

Можно поставить этот вопрос по-другому. Вот последовательность, стремящаяся (как-то) к нулю. Можно ли ее домножить на что-либо растущее, чтобы «погасить» это стремление к нулю? Получив, тем самым, что-нибудь конечное и отличное от нуля в пределе?

Оказывается, что уже , или, что, то же самое, , не сходится к нулю. Распределение этой, зависящей от n, случайной величины становится все более похоже на нормальное распределение! Можно считать, что такая последовательность сходится к случайной величине, имеющей нормальное распределение, но сходится не по вероятности, а только в смысле сходимости распределений, или «слабой сходимости».

14.2 Слабая сходимость

Пусть задана последовательность с. в., задано некоторое распределение с функцией распределения и — произвольная с. в., имеющая распределение .

Определение 50. Говорят, что последовательность с. в. при сходится слабо или по распределению к с. в. , или говорят, что последовательность с. в. слабо сходится к распределению , или говорят, что распределения с.в. слабо сходится к распределению , и пишут:, или , или , если для любого х такого, что функция распределения непрерывна в точке х, имеет место сходимость при .


Страница: