Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
Рефераты >> Педагогика >> Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе

События заглавными латинскими буквами. Приведем примеры.

А: в следующем году первый снег в Москве выпадет в воскресенье.

В: свалившийся со стола бутерброд упадет на пол маслом вниз.

С: при бросании кубика вы получите шестерку.

D: при бросании кубика вы получите четное число очков.

Все перечисленные выше события A,B,C,D – случайные.

Невозможное событие вводится как событие, которое в данных условиях произойти не может. Таковы, например, события E и F:

Е: в следующем году первый снег в Москве вообще не выпадет.

F: при бросании кубика вы получите семерку.

Если же событие при данных условиях обязательно произойдет, то его называют достоверным. Ниже указаны два таких события:

G: свалившийся со стола бутерброд упадет на пол.

H: при бросании кубика вы получите число меньше семерки.

Правда, достоверность события G оказывается под вопросом в невесомости. Но там обычно не едят бутерброд с маслом. Невозможные и достоверные события встречаются в жизни сравнительно редко. Можно сказать, что мы живем в мире случайных событий.

Отметим, что события достоверные и невозможные на этом предварительном этапе мы предлагаем не относить к случайным событиям. Опыт преподавания данного материала показал, что школьникам 10 – 12 лет трудно считать случайными те события, которые происходят всегда, либо не происходят никогда [7]. Введение предельных случаев, удобное для построения формальной теории, но противоречащее бытовым представлениям, оказывается преждевременным. Понятие случайного события соответственно уточняется на более поздних ступенях обучения.

Качественная оценка вероятности событий приводит к тому, что при обсуждении в классе на один и тот же вопрос может быть дано несколько разных ответов, которые могут считаться верными, что непривычно на уроке математики и для ученика, и для учителя.

Например, при обсуждении вероятности наступления события

"вам подарят на день рождения собаку"

ученики в зависимости от личных обстоятельств могут дать ответы:

"это маловероятное событие",

"это очень возможное событие",

"это достоверное событие".

При решении таких задач главное – приводимая аргументация, понимание школьника смысла используемых понятий. Если аргументация вполне логична и разумна, ответ следует считать верным.

Чтобы доказать, что данное событие – случайное, предлагается привести пример такой ситуации или, как говорят математики, такого исхода, когда событие происходит, и пример такого исхода, когда оно не происходит.

Так, событие D – случайное, потому что оно происходит, когда на кубике выпадает, например, четверка, и не происходит, когда на кубике выпадает, допустим, пятерка.

При бросании кубика может выпасть только от одного до шести очков, поэтому событие F – невозможное, а событие H – достоверное.

Пример 1. Бросаем два кубика. Какие из следующих событий невозможные, случайные, достоверные?

A: на кубиках выпало одинаковое число очков.

B: сумма очков на кубиках не превосходит 12.

C: сумма очков на кубиках равна 11.

D: произведение очков на кубиках равно 11.

Решение. Исход любого бросания можно описать двумя числами, выпавшими на кубиках. Например, (3,1) означает, что на первом кубике выпало число 3, а на втором – 1.

При исходе (1,1) событие A происходит, а при исходе (1,2) – не происходит. Значит, событие Аслучайное.

Событие B происходит при любом исходе: ведь каждое из двух чисел на кубике не превосходит 6, а значит, их сумма не превосходит 12. Поэтому событие Bдостоверное.

Событие С происходит при исходе (5,6), но не происходит при исходе (2,2). Значит, оно случайное.

Наконец, для события D нет исхода, при котором оно происходит: число 11 нельзя представить в виде произведения двух целых чисел от 1 до 6. значит, это событие невозможное.

Пример 2. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскиваем наугад 4 шара. Какие из следующих событий невозможные, случайные, достоверные?

A: все вынутые шары одного цвета.

B: все вынутые шары разных цветов.

C: среди вынутых шаров есть разноцветные.

D: среди вынутых шаров есть шары всех трех цветов.

Решение. Событие А – невозможное: нельзя вытащить из коробки 4 одноцветных шара (их только по 3 каждого цвета).

Событие В – тоже невозможное: разных цветов тоже не может быть больше 3, а вынутых шаров 4.

Событие С – достоверное: ведь все 4 шара, как мы уже выяснили, не могут быть одного цвета, поэтому среди них обязательно есть разноцветные.

Наконец, событие D – случайное. Закодируем исходы опытов первыми буквами цветов, в которые окрашены вынутые шары. Например: КЖЖЗ означает, что вынули один красный, два желтых и один зеленый шар; КЖЖЗ – пример исхода, при котором событие D происходит, а ККЖЖ – пример исхода, при котором D не происходит.

В ходе обсуждений различных примеров ученики убеждаются в том, что в мире случайных событий можно обнаружить закономерности и оценить шансы наступления различных событий.

Например, при бросании игрального кубика есть три шанса из шести, что выпадет четное число очков, только один шанс из шести, что выпадет пять очков и никаких шансов, что выпадет семь очков.

Однако рассматривая ситуацию с кубиком, ученик интуитивно опирается на гипотезу о "правильности" кубика, о равновероятности выпадения 1,2,3,4,5 и 6 очков при его подбрасывании.

Важно показать, что далеко не всегда можно точно вычислить шансы наступления того или иного события. Часто шансы приходится оценивать приблизительно – на основе жизненного опыта, уже имеющихся статистических данных или путем, проведения многократных экспериментов. Кстати, в дальнейшем, именно экспериментируя со случайными исходами, ученики убеждаются, что и кубик совсем не всегда оказывается "правильным". В качестве примера "неправильного" кубика демонстрируется кубик со сбитым центром тяжести (к одной из его граней изнутри подклеен пластилин) [7].

В задачах такого типа стоит обсудить с ребятами как общие статистические закономерности, так и индивидуальные особенности, в результате которых для разных людей возможны различные ответы на поставленные вопросы.

Покажем теперь линию развития задач по предложенной теме – от простых к более сложным. Первый блок задач может быть рассмотрен в классе со всеми учащимися, остальные – на кружке или факультативе.

Задача 1. Укажите, какие из следующих событий – невозможные, достоверные, случайные:

A: футбольный матч "Спартак" – "Динамо" закончится в ничью.

B: вы выиграете, участвуя в беспроигрышной лотерее.

C: в полночь выпадет снег, а через 24 часа будет светить солнце.

D: завтра будет контрольная по математике.

E: 30 февраля будет дождь.

F: вас изберут президентом США.

G: вас изберут президентом России.

Ответ. Событие В – достоверное, C, E, F – невозможные, A, D, G – случайные. Но если вы решаете эту задачу накануне выходного дня, то событие D можно считать невозможным.


Страница: