Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школеРефераты >> Педагогика >> Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
События заглавными латинскими буквами. Приведем примеры.
А: в следующем году первый снег в Москве выпадет в воскресенье.
В: свалившийся со стола бутерброд упадет на пол маслом вниз.
С: при бросании кубика вы получите шестерку.
D: при бросании кубика вы получите четное число очков.
Все перечисленные выше события A,B,C,D – случайные.
Невозможное событие вводится как событие, которое в данных условиях произойти не может. Таковы, например, события E и F:
Е: в следующем году первый снег в Москве вообще не выпадет.
F: при бросании кубика вы получите семерку.
Если же событие при данных условиях обязательно произойдет, то его называют достоверным. Ниже указаны два таких события:
G: свалившийся со стола бутерброд упадет на пол.
H: при бросании кубика вы получите число меньше семерки.
Правда, достоверность события G оказывается под вопросом в невесомости. Но там обычно не едят бутерброд с маслом. Невозможные и достоверные события встречаются в жизни сравнительно редко. Можно сказать, что мы живем в мире случайных событий.
Отметим, что события достоверные и невозможные на этом предварительном этапе мы предлагаем не относить к случайным событиям. Опыт преподавания данного материала показал, что школьникам 10 – 12 лет трудно считать случайными те события, которые происходят всегда, либо не происходят никогда [7]. Введение предельных случаев, удобное для построения формальной теории, но противоречащее бытовым представлениям, оказывается преждевременным. Понятие случайного события соответственно уточняется на более поздних ступенях обучения.
Качественная оценка вероятности событий приводит к тому, что при обсуждении в классе на один и тот же вопрос может быть дано несколько разных ответов, которые могут считаться верными, что непривычно на уроке математики и для ученика, и для учителя.
Например, при обсуждении вероятности наступления события
"вам подарят на день рождения собаку"
ученики в зависимости от личных обстоятельств могут дать ответы:
"это маловероятное событие",
"это очень возможное событие",
"это достоверное событие".
При решении таких задач главное – приводимая аргументация, понимание школьника смысла используемых понятий. Если аргументация вполне логична и разумна, ответ следует считать верным.
Чтобы доказать, что данное событие – случайное, предлагается привести пример такой ситуации или, как говорят математики, такого исхода, когда событие происходит, и пример такого исхода, когда оно не происходит.
Так, событие D – случайное, потому что оно происходит, когда на кубике выпадает, например, четверка, и не происходит, когда на кубике выпадает, допустим, пятерка.
При бросании кубика может выпасть только от одного до шести очков, поэтому событие F – невозможное, а событие H – достоверное.
Пример 1. Бросаем два кубика. Какие из следующих событий невозможные, случайные, достоверные?
A: на кубиках выпало одинаковое число очков.
B: сумма очков на кубиках не превосходит 12.
C: сумма очков на кубиках равна 11.
D: произведение очков на кубиках равно 11.
Решение. Исход любого бросания можно описать двумя числами, выпавшими на кубиках. Например, (3,1) означает, что на первом кубике выпало число 3, а на втором – 1.
При исходе (1,1) событие A происходит, а при исходе (1,2) – не происходит. Значит, событие Аслучайное.
Событие B происходит при любом исходе: ведь каждое из двух чисел на кубике не превосходит 6, а значит, их сумма не превосходит 12. Поэтому событие Bдостоверное.
Событие С происходит при исходе (5,6), но не происходит при исходе (2,2). Значит, оно случайное.
Наконец, для события D нет исхода, при котором оно происходит: число 11 нельзя представить в виде произведения двух целых чисел от 1 до 6. значит, это событие невозможное.
Пример 2. В коробке 3 красных, 3 желтых, 3 зеленых шара. Вытаскиваем наугад 4 шара. Какие из следующих событий невозможные, случайные, достоверные?
A: все вынутые шары одного цвета.
B: все вынутые шары разных цветов.
C: среди вынутых шаров есть разноцветные.
D: среди вынутых шаров есть шары всех трех цветов.
Решение. Событие А – невозможное: нельзя вытащить из коробки 4 одноцветных шара (их только по 3 каждого цвета).
Событие В – тоже невозможное: разных цветов тоже не может быть больше 3, а вынутых шаров 4.
Событие С – достоверное: ведь все 4 шара, как мы уже выяснили, не могут быть одного цвета, поэтому среди них обязательно есть разноцветные.
Наконец, событие D – случайное. Закодируем исходы опытов первыми буквами цветов, в которые окрашены вынутые шары. Например: КЖЖЗ означает, что вынули один красный, два желтых и один зеленый шар; КЖЖЗ – пример исхода, при котором событие D происходит, а ККЖЖ – пример исхода, при котором D не происходит.
В ходе обсуждений различных примеров ученики убеждаются в том, что в мире случайных событий можно обнаружить закономерности и оценить шансы наступления различных событий.
Например, при бросании игрального кубика есть три шанса из шести, что выпадет четное число очков, только один шанс из шести, что выпадет пять очков и никаких шансов, что выпадет семь очков.
Однако рассматривая ситуацию с кубиком, ученик интуитивно опирается на гипотезу о "правильности" кубика, о равновероятности выпадения 1,2,3,4,5 и 6 очков при его подбрасывании.
Важно показать, что далеко не всегда можно точно вычислить шансы наступления того или иного события. Часто шансы приходится оценивать приблизительно – на основе жизненного опыта, уже имеющихся статистических данных или путем, проведения многократных экспериментов. Кстати, в дальнейшем, именно экспериментируя со случайными исходами, ученики убеждаются, что и кубик совсем не всегда оказывается "правильным". В качестве примера "неправильного" кубика демонстрируется кубик со сбитым центром тяжести (к одной из его граней изнутри подклеен пластилин) [7].
В задачах такого типа стоит обсудить с ребятами как общие статистические закономерности, так и индивидуальные особенности, в результате которых для разных людей возможны различные ответы на поставленные вопросы.
Покажем теперь линию развития задач по предложенной теме – от простых к более сложным. Первый блок задач может быть рассмотрен в классе со всеми учащимися, остальные – на кружке или факультативе.
Задача 1. Укажите, какие из следующих событий – невозможные, достоверные, случайные:
A: футбольный матч "Спартак" – "Динамо" закончится в ничью.
B: вы выиграете, участвуя в беспроигрышной лотерее.
C: в полночь выпадет снег, а через 24 часа будет светить солнце.
D: завтра будет контрольная по математике.
E: 30 февраля будет дождь.
F: вас изберут президентом США.
G: вас изберут президентом России.
Ответ. Событие В – достоверное, C, E, F – невозможные, A, D, G – случайные. Но если вы решаете эту задачу накануне выходного дня, то событие D можно считать невозможным.