Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школеРефераты >> Педагогика >> Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
В XX веке интерес к геометрической вероятности не ослабел, а вырос, поскольку, помимо чисто математического интереса, они приобрели и серьезное прикладное значение в физике, биологии, медицине, инженерном деле и др.
Другой важный этап в развитии теории вероятностей связан с именем Моавра (1667-1754). Этот ученый впервые ввел в рассмотрение и для простейшего случая обосновал своеобразный закон, очень часто наблюдаемый в случайных явлениях: так называемый нормальный закон (иначе – закон Гаусса). Нормальный закон, как мы увидим далее, играет исключительно важную роль в случайных явлениях. Теоремы, обосновавшие этот закон для тех или иных условий, носят в теории вероятностей общее название "центральной предельной теоремы".
Выдающаяся роль в развитии теории вероятностей принадлежит знаменитому математику Лапласу (1749-1827). Он впервые дал стройное и систематическое изложение основ теории вероятностей, дал доказательство одной из форм центральной предельной теоремы (теорема Моавра - Лапласа) и развил ряд замечательных приложений теории вероятностей к вопросам практики, в частности к анализу ошибок наблюдений и измерений.
Значительный шаг вперед в развитии теории вероятностей связан с именем Гаусса (1777-1855), который дал еще более общее обоснование нормальному закону и и разработал метод обработки экспериментальных данных, известный под названием " метода наименьших квадратов". Следует также отметить работы Пуассона (1781-1840), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.
Для всего XVIII и начала XIX века характерны бурное развитие теории вероятностей и повсеместное увлечение ею. Теории вероятностей становится "модной" наукой. Ее начинают применять не только там, где это применение правомерно, но и там, где оно ничем не оправдано. Для этого периода характерны многочисленные попытки применить теории вероятностей к изучению общественных явлений, к так называемым "моральным" и "нравственным" наукам. Во множестве появились работы, посвященные работам судопроизводства, истории, политики, даже богословия, в которых применялся аппарат теории вероятностей. Для всех этих псевдонаучных исследований характерен чрезвычайно упрощенный, механический подход к рассматриваемых в них общественным явлениям. В основу рассуждения полагаются некоторые произвольно заданные вероятности ( например, при рассмотрении вопросов судопроизводства склонность каждого человека к правде или лжи оценивается некоторой постоянной, одинаковой для всех людей вероятностью), и далее общественная проблема решается как простая арифметическая задача. Естественно, что все подобные попытки были обречены на неудачу и не могли сыграть положительную роль в развитии науки. Напротив, их косвенным результатом оказалось то, что примерно в 20-х – 30-х годах XIX века в Западной Европе повсеместное увлечение теорией вероятностей сменилось разочарованием и скептицизмом. На теории вероятностей стали смотреть как на науку сомнительную, второсортную, род математического развлечения, вряд ли достойную серьезного изучения.
Замечательно, что именно в это время в Росси создается та знаменитая Петербургская математическая школа, трудами которой теории вероятностей была поставлена на прочную логическую и математическую основу и сделана надежным, точным и эффективным методом познания. Со времени появления этой школы развитие теории вероятностей уже теснейшим образом связано с работами русских, а в дальнейшем – советских ученых.
Среди ученых Петербургской математической школы следует назвать В. Я. Буняковского (1804-1889) – автора первого курса теории вероятностей на русском языке, создателя современной русской терминологии в теории вероятностей, автора оригинальных исследований в области статистики и демографии.
Учеником В. Я. Буняковского был великий русский математик П. Л. Чебышев (1821-1894). Среди обширных и разнообразных математических трудов П. Л. Чебышев заметное место занимают его труды по теории вероятностей. П. Л. Чебышеву принадлежит дальнейшее расширение и обобщение закона больших чисел. Кроме того, П. Л. Чебышев ввел в теорию вероятностей весьма мощный и плодотворный метод моментов.
Учеником П. Л. Чебышева был А. А. Марков (1856-1922), также обогативший теорию вероятностей открытиями и методами большой важности. А. А. Марков существенно расширил область применения закона больших чисел и центральной предельной теоремы, распространив их не только на независимые, но и на зависимые опыты. Важнейшей заслугой А. А. Маркова явилось то, что он заложил основы совершенно новой ветви теории вероятностей – теории случайных, или "стохастических", процессов. Развитие этой теории составляет основное содержание новейшей, современной теории вероятностей.
Учеником П. Л. Чебышева был А. М. Ляпунов (1857-1918), с именем которого связано первое доказательство центральной предельной теоремы при чрезвычайно общих условиях. Для доказательства своей теоремы А. М. Ляпунов разработал специальный метод характеристических функций, широко применяемых в современной теории вероятностей.
Характерной особенностью работ Петербургской математической школы была исключительная четкость постановки задач, полная математическая строгость применяемых методов и наряду с этим тесная связь теории с непосредственными требовании практики. Трудами ученых Петербургской математической школы теория вероятностей была выведена с задворок науки и поставлена как полноправный член в ряд точных математических наук. Условия применения ее методов были строго определены, а самые методы доведены до высокой степени совершенства.
Современное развитие теории вероятностей характерно всеобщим подъемом интереса к ней и резким расширением круга ее практических применений. За последние десятилетия теория вероятностей превратилась в одну из наиболее быстро развивающихся наук, теснейшим образом связанную с потребностями практики и техники. Советская школа теории вероятностей, унаследовала традиции Петербургской математической школы, занимает в мировой науке ведущее место.
Здесь мы назовем только некоторых крупнейших советских ученых, труды которых сыграли решающую роль в развитии современной теории вероятностей и ее практических приложений.
А. Я. Хинчин (1893-1959) известен своими исследованиями в области дальнейшего обобщения и усиления закона больших чисел, но главным образом своими исследованиями в области так называемых стационарных случайных процессов.
До недавнего времени теория вероятностей представляла собой еще не сложившуюся математическую науку, в которой основные понятия были недостаточно четко определены. Естественно, что приложения теории вероятностей к изучению явлений природы были слабо обоснованы и встречали порой резкую критику. Однако эти обстоятельства мало смущали естествоиспытателей, и их наивных теоретико-вероятностных подходов в различных областях науки приводило к крупным успехам. Развитие естествознания в начале прошлого столетия предъявило к теории вероятностей повышенные требования. Возникла необходимость в систематическом изучении основных понятий теории вероятностей и выяснении тех условий, при которых возможно использование ее результатов. Вот почему особенно важное значение приобрело формально- логическое обоснование теории вероятностей, ее аксиоматическое построение. При этом в основу теории вероятностей как математической науки должны быть положены предпосылки, являющиеся обобщением многовекового человеческого опыта.