Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школеРефераты >> Педагогика >> Методика обучения элементам теории вероятностей на факультативных занятиях в общеобразовательной школе
В современной математике принято аксиомами называть те предположения, которые принимаются за истинные и в пределах данной теории не доказываются. Все остальные положения этой теории должны выводится чисто логическим путем из принятых аксиом. Формулировка аксиом, т.е. тех фундаментальных положений, на базе которых строится обширная теория, представляет собой не начальную стадию развития математической науки, а является результатом длительного накопления фактов и логического анализа полученных результатов с целью выявления действительно основных первичных фактов. Именно так складывались аксиомы геометрии, первоначальное знакомство с которыми дается в курсе элементарной математики. Подобный же путь прошла и теория вероятностей, в которой аксиоматическое построение ее основ явилось делом сравнительно недавнего прошлого. Впервые задача аксиоматического построения теории вероятностей как логически совершенной науки была поставлена и решена в 1917 году известным математиком С.Н. Бернштейном, а также он существенно расширил область применения предельных теорем При этом С.Н. Бернштейн исходил из качественного сравнения случайных событий по их большей или меньшей вероятности.
Имеется иной подход, предложенный А.Н.Колмогоровым. этот подход тесно связывает теорию вероятностей с современной метрической теорией функций, а также теорией множеств. Аксиоматическое построение теории вероятностей отправляется из основных свойств вероятности, подмеченных на примерах классического и статистического определений. Аксиоматическое определение вероятности, таким образом, как частные случаи включает и классическое и статистическое определения и преодолевает недостаточность каждого из них. На этой базе удалось построить логически совершенное здание современной теории вероятностей и в то же время удовлетворить повышенные требования к ней современного естествознания.
А.Н. Колмогоров дал наиболее совершенное аксиоматическое построение теории вероятностей, связав ее с одним из важнейших разделов современной математики – метрической теории функций. Особое значение имеют работы А. Н. Колмогорова в области теории случайных функций (стохастических процессов), которые в настоящее время основой всех исследований в данной области. Работы А. Н. Колмогорова, относящиеся к оценке эффективности легли в основу целого нового научного направления в теории стрельбы, переросшего затем в более широкую науку об эффективности боевых действий.
В. И. Романовский (1879-1954) и Н. В. Смирнов известны своими работами в области математической статистики, Е. Е. Слуцкий (1880-1948) – в теории случайных процессов, Б. В. Гнеденко – в области теории массового обслуживания, Е. Б. Дынкин – в области марковских случайных процессов, В. С. Пугачев – в области случайных процессов в применении к задачам автоматического управления.
Развитие зарубежной теории вероятностей в настоящее время также идет усиленными темпами в связи с настоятельными требовании практики. Преимущественным вниманием пользуются, как и нас, вопросы, относящиеся к случайным процессам. Значительные работы в этой области принадлежат, например, Н. Винеру, В. Феллеру, Д. Дубу. Важные работы по теории вероятностей и математической статистики принадлежат Р. Фишеру, Д. Нейману и Г. Крамеру.
За последние годы мы стали свидетелями рождения новых и своеобразных методов прикладной теории вероятностей, появление которых связано со спецификой исследуемых технических проблем. Речь идет, в частности, о таких дисциплинах, как "теория информации" и "теория массового обслуживания". Возникшие из непосредственных потребностей практики, эти разделы теории вероятностей приобретают общее теоретическое значение, а круг их приложения постоянно увеличивается
Связь теории вероятностей с практическими потребностями, как уже было отмечено, была основной причиной бурного развития ее в последние десятилетия. Многие ее разделы были развиты как раз в связи с ответами на запросы практиков. Здесь кстати вспомнить слова основателя отечественной школы теории вероятностей П. Л. Чебышева
"Сближение теории с практикой дает самые благотворные результаты, и не одна только практика от этого выигрывает; сами науки развиваются под влиянием ее: она открывает им новые предметы для исследования или новые стороны в предметах давно известных… если теория много выигрывает от новых приложений старой методы или от новых развитий ее, то она еще более приобретает открытием новых методов, и в этом случае наука находит себе верного руководителя в практике".