Использование компьютерных технологий в изучении наглядной геометрииРефераты >> Педагогика >> Использование компьютерных технологий в изучении наглядной геометрии
В следующем пункте рассматривают виды движений плоскости. Теорема 12.4. (о представлении параллельного переноса в виде двух симметрии): в результате двух последовательных осевых симметрии с параллельными осями любая точка А плоскости переходит в такую точку А’, что вектор АА’ постоянен для всех точек плоскости.
Такое преобразование называется параллельным переносом. Сам вектор АА’ называется вектором параллельного переноса.
И затем теорема 12.5 (о представлении поворота в виде двух симметрий): пусть две прямые и на плоскости пересекаются в точке О и образуют между собой угол α (α ≤ 90). В результате двух последовательных симметрии относительно прямых и мы получим поворот на угол 2α вокруг точки О. При этом направление поворота то же, что и у поворота на угол α, переводящего прямую в прямую с доказательством.
Здесь же рассматриваются такие темы как «Три осевые симметрии» и «Скользящая симметрия», отмеченные звездочкой, т.е. предназначены для углубленной подготовки. Задачный материал дифференцирован по уровню сложности.
К учебнику прилагается рабочая тетрадь В.Б. Алексеева, В.Я. Галкина и др., в которую включена тема «Преобразования плоскости». В тетради разобраны многие задачи, имеющиеся в учебнике, а также представлены другие задачи. Работа с тетрадью рекомендована строго после изучения материалов учебника. Задачи, содержащиеся в тетради, предполагают разную степень участия ученика в процессе решения. Решения некоторых задач приведены полностью, их надо внимательно прочитать и осознать, для того, чтобы следующие задачи решить по аналогии или с использованием похожих соображений. В решении большинства задач имеются пропуски, которые нужно заполнить: привести ссылку на формулы или теоремы, несложные вычисления. При этом оставленные отдельно слова и фразы помогут понять логику решения. Задания по теме «Преобразования плоскости» выделены в два занятия. В каждом занятии представлены задачи от простых, закрепляющих основные геометрические понятия и факты, до достаточно сложных, что помогает организовать работу учеников, как по базовой программе, так и по программе углубленного изучения движений.
Изучение геометрических преобразований в учебнике В.Г. Болтянского, Г.Д. Глейзера «Геометрия 7-9» начинается с центральной симметрии. Параграф 10 «Равенство фигур» имеет принципиальное значение для всего последующего курса. Здесь учащиеся впервые приобщаются к методу геометрических преобразований. Сравнение геометрических преобразований с функциями способствует как более легкому усвоению самого понятия геометрического преобразования, так и представлению о единообразии математики, о единстве алгебры и геометрии.
Заметим, что понятие функции, преобразования, или, как ещё говорят, отображения одного множества в другое, играет важнейшую роль не только в алгебре и геометрии, но и во всей современной математике, а также её приложениях.
Преобразования, при которых сохраняются расстояния, называются в геометрии движениями из общих свойств движений в этом параграфе рассматривается лишь предложение о том, что при движении пересечение фигур переходит в пересечение их образов (и то же для объединения). Это предложение представляет собой теорему, т. е. оно может быть доказано. Доказательство носит теоретико-множественный характер, незнакомый мышлению учащихся, и потому это доказательство не приводится. Смысл этого предложения будет ясен учащимся из рассмотрения рисунка в учебном пособии.
Далее вводится определение: две фигуры называются равными, если существует движение, отображающее одну из них на другую. Затем пишется: так как при движении длины сохраняются, то равные отрезки имеют равную длину. Справедливо и обратное утверждение: если два отрезка имеют равную длину, то они равны, т. е. существует движение, отображающее один из них на другой.
В параграфе 11 «Поворот и центральная симметрия» вводится один из видов движений – поворот. Приводятся рисунки для наглядного представления о повороте. Затем рассматриваются задачи (с решением). После решения первой задачи упоминаются «характерные точки» фигуры. В случае отрезка такими характерными точками являются его концы. Для ломанной (или многоугольника) характерными точками являются вершины. А чтобы найти образ окружности, надо построить образ её центра и провести окружность того же радиуса. Полуплоскость можно задать тремя точками: надо задать граничную прямую в этой полуплоскости (для этого нужно указать две точки) и задать ещё одну точку этой полуплоскости (не лежащую на прямой).
В следующей главе рассказывают об осевой симметрии. При изложении материала о движениях, определение движения даётся лишь описательное, и доказательство того, что рассматриваемое преобразование является движением, то есть сохраняет расстояния, не приводится. О параллельном переносе такого сказать нельзя: если при параллельном переносе на вектор имеем , то - параллелограмм, и поэтому = АВ. Иначе говоря, параллельный перенос сохраняет расстояния, то есть является движением. Что же касается поворота и осевой симметрии, то они вводятся лишь описательно. В частности, поворот может быть определён как такое движение плоскости, при котором только одна точка остаётся неподвижной, то есть переходит в себя. Приводится наглядная модель поворота, которая заменяет учащимся доказательство существования такого движения.
То же относится и к осевой симметрии. Она может быть определена как такое движение плоскости, при котором все точки некоторой прямой L остаются неподвижными, а любая точка A не принадлежащая L переходит в точку , лежащую по другую сторону прямой L. Также приводится наглядная модель осевой симметрии, а вопрос о существовании подобного движения не рассматривается. Упрощённую модель можно получить перегибанием чертежа по прямой L (в этом случае рассматривается симметрия не всей плоскости, а полуплоскости).
Как и при рассмотрении движений в предыдущих параграфах, проводится идея о том, что для построения образа фигуры надо выделить в ней характерные точки и построить их образы.
Материал следующего параграфа «Ось симметрии двух точек» традиционный. Материал о четырёхугольниках специального вида (прямоугольник, ромб, квадрат), традиционно выделяемый в отдельный параграф, здесь рассредоточен по разным параграфам учебного пособия. В частности, в этом параграфе рассматривается ромб. Вводится теорема: пусть L - ось симметрии точек А и В. Тогда: если точка М принадлежит прямой L, то AM = ВМ; если точка М не принадлежит прямой L, то AM не равно ВМ. Эту теорему можно формулировать и другими способами: