Лекции по материаловедениюРефераты >> Радиоэлектроника >> Лекции по материаловедению
Диаграмма состояния системы для случая, когда компоненты полностью не растворяются друг в друге в твердом состоянии и растворимы в жидком состоянии, показана на рис. 22 в). В данном случае линия ликвидус выглядит в виде ломаной, причем при некотором составе, называемом эвтектическим (от греческого слова эвтектикос - легкоплавкий), линия ликвидус касается линии солидус. Линия солидус представляет собой горизонтальную линию. Ниже линии солидус в сплава имеется две твердые фазы, являющиеся чистыми компонентами сплава. Поскольку компоненты не растворимы друг в друге, то свойства линейно меняются при изменении состава в соответствии с тем, как меняется количество фаз. Однако вблизи эвтектического состава наблюдается отклонение от линейного закона. Это связано с тем, что при кристаллизации эвтектических сплавов из жидкости одновременно выпадают две твердые фазы, и формируется мелкозернистая структура. Измельчение зерен ведет за собой увеличение электрического сопротивления и прочности эвтектических сплавов.
Для систем сплавов с ограниченной растворимостью характерны диаграммы состояния, показанные на рис. 22 д). В таких системах имеются две области существования фаз, представляющих раствор одного компонента в другом, и область существования смеси двух фаз. При составах, соответствующих областям существования твердых растворов на основе какого-либо компонента, изменения свойств аналогично изменению свойств в системах с неограниченной растворимостью компонентов, а в областях составов, соответствующих двухфазным смесям, изменение состава ведет к изменению свойств, характерному для систем с нерастворимыми в твердом состоянии компонентами.
1.7 Элементы зонной теории твердых тел
Зонная теория твердого тела – это теория валентных электронов движущихся в периодическом поле кристаллической решетки.
У отдельных, не взаимодействующих друг с другом атомов электроны могут занимать вполне определенные энергетические уровни, определяемые набором квантовых чисел: главного n, азимутального l, магнитного m, спинового s. Часть этих энергетических уровней заполнена, а часть свободна. На свободные энергетические уровни электроны переходят лишь при возбуждении (рис. 23). Возбужденные электроны стремятся к минимуму энергии и, переходя на уровни с минимальной энергией, излучают кванты электромагнитного поля – фотоны.
Если имеется система из множества удаленных друг от друга одинаковых атомов (газообразное вещество), то взаимодействие между электронами отсутствует, и энергетический спектр атомов такой же, как и у одиночного атома.
При конденсации газа в жидкость или в твердое тело расстояния между атомами резко сокращаются, и электроны соседних атомов начинают взаимодействовать друг с другом. В соответствии с принципом Паули, на каждом энергетическом уровне может находиться не более двух электронов, причем спиновые магнитные моменты этих атомов должны быть противоположно направленными. Поэтому энергетические уровни расщепляются на подуровни и образуют энергетические зоны. Разница в энергии соседних подуровней составляет примерно 10-22 электрон-вольт. Отметим, что средняя энергия тепловых колебаний атомов в кристаллической решетки при комнатной температуре примерно 0,03 электрон-вольт. Следовательно, энергетические зоны являются практически сплошными.
Рис. 23. Схема расположения энергия энергетических уровней для одиночного атома и неметаллического кристалла. |
Очевидно, что расщепление происходит как энергетических уровней, заполненных электронами, так и свободных энергетических уровней. В ходе расщепления отдельных энергетических уровней некоторые энергетические зоны могут перекрываться. При перекрытии заполненных и свободных энергетических зон электрон может менять свою кинетическую энергию, а следовательно, может двигаться. В том случае, когда заполненная и свободная энергетическая зоны не перекрываются, электроны не могут менять кинетическую энергию и не могут перемещаться. В последнем случае между свободной энергетической зоной и заполненной энергетической зоной появляется зона запрещенных значений энергии.
При перекрытии свободной энергетической зоны с заполненной зоёной мы имеем дело с проводниками. В случае, когда зона запрещенных значений энергии велика (более 5 электрон-вольт) и электрон не может преодолеть ее за счет термического возбуждения, речь идет о диэлектриках. Наконец, в том случае, когда зона запрещенных значений энергии невелика, то материал является полупроводником (рис. 24).
Рис. 24. Энергетическое отличие диэлектриков от полупроводников и металлических проводников с точки зрения зонной теории твердого тела: 1 – заполненная электронная зона; 2 – зона свободных энергетических уровней; 3 – запрещенная зона шириной Э. |
2. ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ
Диэлектрическими принято называть материалы, имеющие низкую плотность подвижных носителей заряда (ионов и электронов), поэтому удельное электрическое сопротивление таких материалов в 1012 - 1025 раз выше, чем у проводниковых материалов. Очевидно, что диэлектрическими являются материалы с ковалентной, поляризационной или ионной связью между атомами, причем последние только в твердом состоянии. Кроме того, энергия возбуждения электронов на уровни проводимости превосходит 5 электрон-вольт.
По агрегатному состоянию диэлектрики бывают твердыми, жидкими и газообразными. По происхождению диэлектрики могут быть естественными и искусственными, органическими и неорганическими.
По электрической структуре все диэлектрики можно разделить на неполярные и полярные. У неполярных диэлектриков в отсутствии внешнего поля собственный дипольный момент структурных единиц (атомов, молекул, элементарных кристаллических ячеек) равен нулю. У полярных диэлектриков собственный дипольный момент структурных единиц отличен от нуля и в отсутствии внешнего поля. В свою очередь, полярные диэлектрики могут быть параэлектрическими и сегнетоэлектрическими. У параэлектриков дипольные моменты структурных единиц распределены по разным направлениям хаотически, и суммарный дипольный момент даже небольшого объема равен нулю. У сегнетоэлектриков дипольные моменты ориентированы параллельно, и суммарный дипольный момент малых объемов не равен нулю.
При помещении диэлектрика в электрическое поле в нем развиваются два основных процесса: поляризация и сквозная электропроводность. Развитие основных процессов может, в свою очередь, привести к ряду дополнительных процессов к потере энергии электрического поля в диэлектрике и пробою диэлектрика.