Лекции по материаловедению
Рефераты >> Радиоэлектроника >> Лекции по материаловедению

Обменный интеграл зависит от расстояния между соседними атомами (а) и от радиуса незаполненных орбиталей (r) или в обобщенном виде от отношения (а/r). Зависимость обменного интеграла от отношения а/r показана на рисунке 46.

Рис. 46. Зависимость обменного интеграла (А) от расстояния между атомами, отнесенного к радиусу незаполненной электронной оболочки (a/r).

При отношении расстояния между атомами к радиусу незаполненных оболочек большем 3 обменный интеграл положителен и для того чтобы обменная энергия вычиталась из общей энергии системы необходимо параллельная ориентация спиновых магнитных моментов соседних атомов. Такие вещества являются ферромагнетиками. При отношении а/r меньшем 3 обменный интеграл отрицателен и для того чтобы энергия системы была минимальной скалярное произведение магнитных моментов соседних атомов должно быть отрицательным. В этом случае магнитные моменты соседних атомов антипараллельны и такие вещества принято называть антиферромагнетиками. При равенстве отношения а/r 3 обменная энергия нулевая и взаимная ориентация магнитных моментов произвольна. Такие вещества являются парамагнетиками.

Таким образом, для того чтобы вещество было ферромагнитным необходимо выполнение двух условий:

1). В состав материала должны входить атомы переходных металлов, обладающих большими магнитными моментами;

2). Отношение расстояния между атомами к радиусу незаполненных электронных оболочек должно превышать 3.

3.2.1 Доменная структура ферромагнетиков.

Магнитные моменты соседних атомов ферромагнетиков ориентированны параллельно, однако в кристалле достаточно большой величины все магнитные моменты не могут быть ориентированны параллельно. В противном случае вокруг кристалла появится магнитное поле и энергия системы возрастет. Для снижения энергии системы кристалл разбивается на домены - области спонтанной намагниченности, причем разбиение производится таким образом, чтобы внешнее магнитное поле отсутствовало (рис. 47).

Рис. 47. Разбиение кристалла на домены. Стрелками показаны направления векторов намагниченности в каждом домене.

Важно отметить, что на границе доменов магнитные моменты атомов не могут быть антипараллельными. В противном случае энергия атомов повысится на величину обменной энергии. Таким образом, на границе доменов происходит постепенный поворот магнитных моментов атомов из одного положения в другое. Тем не менее, энергия атомов на границах доменов оказывается повышенной. Докажем это.

Как отмечалось выше, обменное взаимодействие соседних атомов ферромагнитных материалов приводит к снижению энергии системы на величину: Uобм = -А (s1s2), где А - обменный интеграл зависящий от отношения а/r. Поскольку расстояние между атомами по различным кристаллографическим направлениям различно, то и значения обменной энергии по различным направлениям различно. Таким образом, в ферромагнетиках появляется магнитная анизотропия. Очевидно, что внутри доменов магнитные моменты атомов ориентированы вдоль наиболее энергетически выгодных направлений. Такие направления принято называть направлениями легкого намагничивания. На границах доменов магнитные моменты ориентированы в менее выгодных магнитотвердых направлениях.

Итак, мы доказали что на границах доменов энергия атомов повышена. Следовательно, для того чтобы энергия материала была минимальной необходимо, чтобы протяженность границ доменов была минимальной, или размер доменов был как можно большим.

В то же время, росту доменов препятствует магнитострикция - деформация кристаллической решетки под воздействием магнитного поля. Обменное взаимодействие между атомами приводит к появлению дополнительных сил взаимодействия и кристаллическая решетка деформируется. Рост домена ведет к увеличению напряженности локального поля внутри домена и возрастанию деформации решетки. При этом энергия системы увеличивается. Таким образом, противоборство магнитной анизотропии и магнитострикции приводит к установлению оптимального размера магнитных доменов.

3.2.2 Кривая намагничивания

При помещении ферромагнетика во внешнее магнитное поле векторы намагниченности каких-либо доменов окажутся совпавшими или близкими к совпадению с вектором напряжённости внешнего магнитного поля. Энергия таких доменов будет минимальной, тогда как энергия всех остальных доменов повысится. Для того чтобы понизить энергию системы благоприятно ориентированные домены растут. При этом увеличивается намагниченность (М) и, следовательно, возрастает индукция (В). Зависимость индукции от напряженности внешнего магнитного поля принято называть кривой намагничивания (рис. 48).

Рис. 48. Кривая намагничивания ферромагнетиков.

На начальном участке кривой намагничивания увеличение напряженности внешнего поля ведет к незначительному росту индукции, причем при отключении внешнего поля индукция снижается до нуля. Этот участок принято называть участком обратимого намагничивания или областью Релея (I).

На втором участке незначительное изменение напряженности внешнего поля ведет к заметным изменениям индукции. Этот участок принято называть участком резкого роста индукции или областью скачков Баркгаузена (II).

На третьем участке кривой намагничивания зависимость индукции от напряженности внешнего поля вновь ослабевает. Этот участок называют участком замедленного намагничивания или область намагничивания за счет процессов вращения (III).

На четвертом участке индукция растет пропорционально напряженности магнитного поля. Этот участок называют участком насыщения или областью парапроцесса (IV).

Для понимания природы изменения индукции при увеличении напряженности внешнего поля необходимо, прежде всего, разобраться в том, как границы доменов взаимодействуют со структурными особенностями материала.

В любом материале присутствуют дислокации, в области прилегающей к дислокации кристаллическая решетка материала искажена. В том случае, если дислокация находится внутри домена, магнитные моменты атомов вблизи дислокации оказываются направленными в направлении трудного намагничивания. Если дислокация находится на границе доменов, где происходит постепенный поворот магнитных моментов от одного направления легкого намагничивания к другому, искажение кристаллической решетки приводит к тому, что часть магнитных моментов атомов оказываются направленными в направлении легкого намагничивания. Следовательно, дислокациям энергетически выгодно находится на границах доменов.


Страница: