Лекции по материаловедению
Рефераты >> Радиоэлектроника >> Лекции по материаловедению

Сплавы системы Fe-Ni-Al-Cu-Co получили название альнико. Для повышения магнитных свойств закаленный сплав подвергают термомагнитной обработке, то есть производят нагрев для старения в сильном магнитном поле. При этом дисперсные частицы интерметаллидов выделяются по границам доменов и закрепляют уже сориентированные домены. Сплавы, прошедшие термомагнитную обработку получили название магнико.

Изделия из сплавов системы Fe-Ni-Al-Cu-Co можно получать либо методом литья, либо методами порошковой металлургии. При литье трудно получать изделия со строго выдержанными размерами. Кроме того, после литья необходим длительный гомогенизационный отжиг для выравнивания неоднородности химического состава. У изделий полученных методами порошковой металлургии коэрцитивная сила практически такая же что и у литых, но остаточная индукция на 35-50% ниже.

3.4.3 Деформируемые магнитотвердые материалы.

Как правило, магнитотвердые материалы непластичны, поскольку дисперсные частицы выделений, препятствующие смещению границ доменов, затрудняют движение дислокаций. Однако в ряде случаев необходимо иметь магнитотвердый материал в виде лент, листов, проволоки для изготовления штамповкой элементов измерительных систем, стрелок компасов и буссолей, лент магнитной записи и так далее. Такие материалы должны обладать заметной пластичностью.

К деформируемым магнитотвердым материалам относятся сплавы систем Cu-20%Ni-20%Fe - кунифе, Cu -20%Ni 20%Co - кунико, и Fe-52%Co -(4-14)%V - викаллой.

У сплавов на медной основе большая коэрцитивная сила возникает после значительного обжатия (на 90-95%) и последующего отпуска при 600° С. Высокие магнитные свойства этих материалов обусловлены выделением однодоменных частиц ферромагнитной фазы в процессе отпуска пересыщенного твердого раствора. Важно отметить, что в ходе предварительной деформации в материале возникает острая текстура, поэтому, выделяющиеся частицы, являются ориентированными.

Особенностью сплава кунико является возможность получения изотропных магнитов с высокой коэрцитивной силой без большого обжатия. Поэтому из этого сплава изготавливают магниты сложной формы с большим размагничивающим фактором, например многополюсные звездочки.

Сплавы системы Co-V-Fe характеризуются высокой индукцией (до 1,8 Тл). Их используют для изготовления небольших магнитов, стрелок компасов и буссолей, магнитной проволоки.

3.4.4 Магнитотвердые ферриты

Из магнитотвердых ферритов наиболее известен бариевый феррит BaOґ6Fe2O3 (ФБ, ферроксдюр). В отличие от магнитомягких ферритов он имеет не кубическую, а гексагональную решетку с одноосной анизотропией. Высокая коэрцитивная сила обусловлена малым размером зерен и сильной кристаллографической анизотропией. Помимо бариевого феррита используются хромбариевый феррит (ХБ) и кобальтовый феррит

Технология получения магнитотвердых ферритов в общих чертах похожа на технологию получения магнитомягких ферритов. Однако для получения мелкокристаллической структуры, осуществляют очень тонкий помол (как правило, в водной среде), а спекание проводят при относительно невысоких температурах для избежания роста зерен.

Для придания анизотропии магнитных свойств материал текстурируют. Для создания текстуры сметанообразную массу помещают в сильное магнитное поле, которое отключают только после формирования изделия и его полного высыхания. Бариевые анизотропные ферриты маркируются БА, хромобариевые - ХБА, кобальтовые КА. Изотропные, нетекстурированные магниты маркируются БИ, ХБИ и КИ соответственно.

Ферритные материалы значительно дешевле металлических. Вместе с тем у них существенно ниже удельный вес. Высокая коэрцитивная сила позволяет изготавливать магниты с малым отношением длины к поперечному сечению.

К недостаткам магнитотвердых ферритов следует отнести низкую механическую прочность, хрупкость, высокую чувствительность к изменению температуры. Кроме того при охлаждении до – 60°С и повторном нагреве они теряют ферромагнитные свойства.

3.4.5 Высококоэрцитивные магниты.

К этой группе материалов относят сплавы редкоземельных элементов с кобальтом типа RСo5 или RСо17, а также сплавы железа или кобальта с платиной. Эти материалы обладают рекордной запасенной магнитной энергией, однако, их широкому применению мешает высокая стоимость.

4. Проводниковые материалы

Все проводниковые материалы можно условно разделить на три группы: 1) материалы высокой электропроводности, используемые для изготовления проводников; 2) металлические материалы высокого удельного электрического сопротивления, применяемые для изготовления резисторов и нагревательных элементов; 3) материалы для изготовления контактов.

Одной из важнейших характеристик проводниковых материалов является их электропроводность (g):

g=nqm (4.1)

где: n - концентрация носителей заряда, q - величина заряда, m - подвижность носителей заряда.

Очевидно, что у материалов высокой электропроводности и контактных материалов электропроводность должна быть достаточно велика, тогда как электропроводность материалов высокого электросопротивления должна быть мала.

Основными носителями заряда в металлических материалах являются свободные электроны, появляющиеся при образовании металлической связи. Как известно металлическая связь образуется между атомами элементов с валентной электронной оболочкой заполненной менее чем на половину. В этом случае валентные электроны отрываются от атомов и обнажается полностью заполненная электронная оболочка. При этом валентные электроны становятся свободными, образуя «электронный газ». Ранее мы отмечали, что чем выше плотность электронного газа, тем плотнее упакована кристаллическая решетка металлов. В этой связи следует ожидать что электропроводность металлов с ГЦК решеткой будет выше, чем электропроводность металлов с ОЦК решеткой.

Помимо концентрации электронов на электропроводность оказывает влияние и их подвижность. На подвижность электронов в основном оказывают влияние два фактора: наличие дефектов кристаллической решетки и строение внутренних электронных оболочек атомов. При любом искажении кристаллической решетки распространение электронных волн затрудняется, что аналогично снижению подвижности электронов. Резко снижает подвижность электронов наличие незаполненных внутренних электронных оболочек. В этом случае свободные электроны могут временно захватываться незаполненными внутренними оболочками атомов. Поэтому электропроводность переходных металлов существенно ниже электропроводности обычных металлов.

4.1 Материалы высокой электропроводности.

К материалам высокой электропроводности предъявляются следующие требования:

· Высокая электропроводность

· Высокая механическая прочность

· Технологичность - то есть способность к сварке, пайке, высокая пластичность.

· Высокая коррозионная стойкость.

· Низкая стоимость.

Очевидно, что высокой электропроводностью будут обладать чистые непереходные металлы с ГЦК решеткой (Ag, Cu, Al, Au).


Страница: