Биокерамика на основе фосфатов кальция
Рефераты >> Химия >> Биокерамика на основе фосфатов кальция

Нами совместно с МНИОИ им П.А. Герцена и университетом Упсалы (Швеция) были проведены испытания пористых керамических гранул на основе ГА и ФГА in vitro и in vivo. В работе [204] исследовали адсорбцию 24 протеинов плазмы крови на поверхности ГА и ФГА пористых гранул. Результаты приведены в таблице 13. Установлено, что замещение ОН--групп фтором в количестве до 10% не оказывает отрицательного влияния на абсорбцию протеинов плазмы крови. Вероятно, большее влияние на адсорбцию оказывает морфология поверхности, нежели введение фтора. Данное мнение соответствует результатам известных исследований, продемонстрировавших отсутствие отрицательного эффекта фтора на процесс остеоинтеграции [109]. С другой стороны, введение фтора может дать положительный результат вследствие его влияния на движущую силу осаждения апатита из раствора при реминерализации костной ткани.

В экспериментах in vitro свойства керамических гранул изучали на модели фибробластов человека (ФЧ). ФЧ пассировали в культуральных флаконах в полной ростовой среде (ПРС) состава: среда RPMI-1640 (Институт полиомиелита и вирусных энцефалитов, РАМН), 10% эмбриональной телячьей сыворотки (ПанЭко), 10 мкг/мл гентамицына. Культивирование проводили в атмосфере увлажненного воздуха, содержащего 5% СО2, при температуре 370 С. В экспериментах использовали ФЧ в поздней логарифмической фазе роста (конфлюэнтный монослой, 96 часов культивирования). Для получения суспензии одиночных клеток монослой ФЧ обрабатывали 0,25% раствором трипсина и раствором для диссоциации клеток (Sigma). Суспензию отмывали центрифугированием в большом объеме ПРС и производили оценку жизнеспособности клеток, окрашивая суспензию 0,04%-ным раствором трипанового синего. Оценивали адгезивные свойства, острую цитотоксичность и динамику численной популяции фибробластов (стандартный МТТ-тест).

Для исследования биосовместимости образцов в экспериментах in vivo использовали модель подкожной имплантации. Мышам-самкам линии ВDF1 весом 18-20 г под гексеналовым наркозом (100 мг/кг массы животного) делали кожный надрез в области грудного отдела позвоночника (паравертебрально). При помощи автоматического дозатора имплантировали предварительно отмытый образец. Вес и объем материала был одинаковым для всех животных и составлял 120 мг в 300 мкл физиологического раствора. На 7-е, 10-е, 17-е 24-е и 31-е сутки эксперимента образцы керамики извлекали, один из них использовали для оценки плотности клеточной популяции аутологичных фибробластов на керамике с помощью адаптированного для этих целей МТТ-метода, второй – для визуальной оценки образцов.

Показано, что гранулы не вызывают острой цитотоксичности, и имеют адгезивную способностью, зависящую от добавок фтора, что выражается в различной скорости увеличения популяции ФЧ. Наилучшими по этому признаку оказались образцы гранул ГА, позволяющие наращивать в 2,5 раза больше клеток in vitro за равный отрезок времени по сравнению с контролем (культуральные лунки без гранул). На рис. 41 показано изменение оптической плотности раствора формазана при совместном культивировании ФЧ и гранул ГА с разной плотностью посева. Можно отметить трехкратное увеличение плотности популяции на 11-й день культивирования. Введение в ГА фторид-ионов в количестве 2 и 10 масс. % взамен групп ОН- не улучшает свойства материалов как матриц для наращивания клеток. Однако ионы фтора, как известно, повышают устойчивость апатитовой керамики к резорбции внеклеточными жидкостями, что может быть полезным для ряда применений. Можно полагать, что керамические гранулы, обладая существенно более высокой площадью поверхности для клеточной экспансии по сравнению с контролем, изменяют исходную плотность посева на единицу потенциальной ростовой поверхности.

В экспериментах in vivo вокруг гранул уже к 10 суткам формируется капсула из соединительной ткани, толщина которой увеличивается со временем в течение эксперимента. На 10-е сутки после имплантации на поверхности капсулы отмечены многочисленные кровеносные сосуды, причем процесс неоангиогенеза не ограничивается только капсулой - на 24 и 38 день опыта кровеносные сосуды и капиллярная сеть видны и на многочисленных гранулах ГА внутри капсулы (рис. 42). В эти же дни отмечается активное прорастание соединительной тканью промежутков между гранулами внутри капсулы и заполнение фибробластами мыши пустот внутри некоторых гранул керамики.

На основе полученных результатов было проведено исследование гранул ГА в качестве матрикса для мезенхимальных стволовых клеток (МСК) на модели дефекта теменной кости крысы в экспериментах in vivo (МНИОИ им П.А. Герцена).

Работа выполнена на 10 крысах - самках линии Вистар весом 180-200 г. Все операции осуществляли под наркозом: на первом этапе - седация животного при помощи 0,5 мл дроперидола внутрибрюшинно, затем –0,3 мл кетамина внутримышечно. Ход операции по созданию дефекта теменной кости крысы был следующим: в лобно-теменной области животного производили кожный разрез скальпа, затем мобилизовали апоневроз, оголяя теменную кость. Посредством бора осторожно формировали дефект кости до твердой мозговой оболочки размерами 4 мм по длине, 2-3 мм по ширине, глубиной 1-2 мм. После операции область дефекта сверху укрывали апоневрозом и наглухо зашивали кожу скальпа.

Всего было сформировано три группы животных: I – костный дефект (контроль I); II- полость костного дефекта заполняли гранулами ГА (контроль II); III- полость костного дефекта заполняли МСК, предкультивированными на гранулах ГА (опыт). Рентгенологический и гистологический контроли осуществляли в день операции и далее через 3 месяца.

Первичная культура клеток из КМ крысы была полиморфной. Однако уже через неделю в культуре обнаруживались многочисленные фибробластоподобные клетки, которые далее формировали колонии и через 17-21 дней образовывали предконфлюэнтный монослой. Культура МСК крысы первого пассажа в основном была представлена клетками веретеновидной формы (80-90%), реже встречались округлые и кубоидальные клетки. После культивирования МСК крысы на гранулах ГА отмечалась их высокая жизнеспособность.

Показано, что в I контрольной группе животных (дефект теменной кости) через 3 месяца после операции наблюдали спонтанное неравномерное закрытие дефекта (рис. 43а). На гистологических срезах при этом отмечено формирование плотной надкостницы с грубыми рубцовыми изменениями в области трепанации.

Во II группе контрольных животных (дефект теменной кости, заполненный гранулами ГА) на рентгеновских снимках (рис. 43б) обнаружено закрытие дефекта на всем протяжении оперативного вмешательства с формированием надкостницы с интимно прилегающими к ней гранулами ГА. Морфологический анализ выявил формирование плотной фиброзной капсулы вокруг гранул ГА.

Наиболее интегрированные и упорядоченные структуры в области закрытия дефекта обнаружены в III группе животных (дефект теменной кости, заполненный гранулами ГА, насыщенными МСК) (рис. 43в). На гистологических препаратах отмечено равномерное закрытие дефекта на всем его протяжении, гранулы ГА были окружены плотной фиброзной капсулой, зрелая упорядоченная соединительная ткань заполняла промежутки между гранулами, прорастая ряд из них. На краях дефекта и под надкостницей наблюдали очаги остео- и хондросинтеза.


Страница: