Биокерамика на основе фосфатов кальция
Рефераты >> Химия >> Биокерамика на основе фосфатов кальция

Следует отметить, что с увеличением количества ФА от 0 до 10 масс. %, растут значения общей пористости от 21 до 25 % и удельной поверхности (БЭТ) от 0,31 до 0,8 м2/г, соответственно, спеченной при температуре 1200 0С керамики. Последнее связано с увеличением доли микропор диаметром 20-450 Ǻ.

На рис. 23 показаны ИК-спектры механической смеси 90% ГА – 10% ФА и смеси, спеченной при температуре 12000С). Различия ИК-спектров в области 600 – 800 см-1 свидетельствуют о формировании в процессе спекания твёрдого раствора: положение и интенсивность полосы при 631 см-1 для ГА зависит от степени замещения ОН- фтором. При содержании фтора около 10% данная полоса смещается к 637 см-1, что характерно для спектра ФГА.

В табл. 10 приведены данные лазерной масс-спектрометрии по анализу исходных порошков (ГА и смесь 90% ГА–10% ФА) и керамики тех же составов, спечённой при 1200°С. Процесс спекания не влияет значительно на состав материала, т.е. фтор не улетучивается в ходе спекания. Микроструктура образцов керамики с 10%ФА, спеченной при 1200 и 13000С, показана на рис. 24. Даже при высоком увеличении не наблюдалось значительной разницы в атомном контрасте в образцах, исследованных в режиме обратного рассеяния электронов, что указывает на высокую гомогенность их состава. Открытая пористость образцов снижалась с 25,2 до 1,4% в этом интервале температур. Определенное методом рентгеновского энерго-дисперсионного анализа содержание фтора в образцах было 0,65 масс.%, что соответствует данным лазерной масс-спектрометрии. Анализ, выполненный по 20 точкам в разных участках образца, дал разброс результатов от 1,08 до 0,41 масс.%, среднее значение близко к данным лазерной масс-спектрометрии. Не было обнаружено точек, свободных от содержания фтора, даже при фокусировке электронного пучка с малой дивергенцией. Эти данные подтверждают образование твердого раствора в изученной системе. Таким образом, эксперименты по термической обработке смесей тонкодисперсных порошков ГА и ФА продемонстрировали возможность получение ФГА керамики.

Варьируя температуру спекания смесей ГА – (0-10) масс. % ФА в интервале 1180 – 1250 0С, согласно данным, приведенным на рис. 19 и 20, изготовлены образцы керамики с примерно одинаковой пористостью в диапазоне 25 – 28%. Шероховатость поверхности Rа образцов составила 0,45 – 0,61 мкм, размер пор 0,4 – 1,0 мкм (³ 60%) и 3-10 (£ 40%). Образцы испытывали in vitro на остеобласто-подобных клетках MG-63 остеосаркомы человека (совместно с Университетом Упсалы, Швеция). Применяли стандартный МТТ-тест, культивируя 15000 клеток на образец. В качестве контроля использовали полистирол. Результаты представлены на рис. 25. Из приведенных данных следует, что плотность живых клеток возрастает с временем культивирования, причем введение до 10 масс. % ФА в ГА-керамику, по-крайней мере, не ухудшает жизнеспособности клеток. Керамика ГА с ФА до 10 масс. % изученных составов может быть использована в условиях, требующих повышенную устойчивость к растворению тканевыми жидкостями организма. В частности, такая керамика была использована в качестве мишеней для радиочастотного ионно-стимулированного нанесения покрытий на титановые имплантаты.

При разработке материалов для реконструкции костных тканей стремятся достичь близости химического и фазового состава материала к составу ткани, а также необходимых химических свойств, в частности, для обеспечения требуемой кинетики резорбции жидкостями организма. Возможно, наиболее физиологически важными для ГА являются анионные замещения карбонат-группами и катионные - ионами магния. Карбонат-группы создают решеточные искажения и дефекты решетки в структуре ГА, влияющие на биологическую активность. Магний всегда присутствует в примесных количествах в эмали, дентине и костной ткани, влияя на развитие остеодистрофии [190,191]. Апластические нарушения костной ткани сопровождаются понижением содержания в ней магния [191]. В связи с эти, важной задачей является получение керамических материалов на основе ГА, содержащих как карбонат-группы, так и ионы магния. Задача осложняется, однако, тем, что магний, даже в малых количествах, дестабилизирует структуру ГА, способствуя кристаллизации -ТКФ [133,153]. Карбонат-ионы удаляются из КГА при температурах существенно ниже температуры, необходимой для спекания ГА-керамики. Относительно мало известно о термической стабильности КГА и магний-замещенного КГА. Проводились эксперименты по изучению влияния состава газовой среды, в том числе азота, углекислого газа, водяных паров, кислорода на термическое разложение КГА. В работе [192] установлено, что состав газовой среды оказывает значительное влияние на кристаллизацию и полиморфизм КГА, полученного осаждением из растворов. Температура кристаллизации апатита снижается с повышением содержания СО32--групп. Добавление в состав газовой среды - углекислого газа, с 3% водяного пара, повышает температуру кристаллизации (с 900 до 11000С) и температуру полиморфного превращения КГА в ТКФ с 1300 до 15000С. Установлено влияние типа замещения (А- или Б-тип) в КГА на его термическую стабильность [193].

Было изучено термическое разложение КГА и магний-содержащих КГА, синтезированных разными способами в зависимости от температуры [162,165]. Исследования проводили в равновесных условиях с применением метода Фурье ИК-спектроскопии конденсата газовой фазы. Выполняли также ИК-спектроскопию твердой фазы после термообработок, термогравиметрический и рентгеновский фазовый анализ.

Замещенные гидроксиапатиты синтезировали двумя способами: осаждением из растворов нитрата Са (Mg), однозамещенного фосфата аммония, карбоната аммония и аммиака (1) и твердо-жидкофазным взаимодействием оксидов Са (Mg) с однозамещенным фосфатом аммония и карбонатом кальция в присутствии дозированных количеств воды (2). Фурье ИК-анализ конденсата паровой фазы изучали в вакууме с использованием ячейки Кнудсена для испарения и покрытой золотом подложки для конденсации продуктов термического разложения при температуре 12 К [194,195]. В качестве изолирующего матричного газа использовали аргон высокой чистоты. Составы исследованных апатитов представлены в таблице 11.

На рис. 26 приведены, в качестве примера, дифрактограммы образца 7 после термических обработок при температурах 300, 850, 900, 950 и 11000С. Как следует из анализа дифрактограмм, КГА, синтезированный твердо-жидкофазным взаимодействием, сохраняет все характерные рефлексы КГА даже после термообработки при 11000С. В продукте синтеза присутствует карбонат кальция в качестве примесной фазы, вплоть до температуры термообработки 9000С. С повышением температуры карбонат кальция разлагается, но появляются рефлексы от СаО, причиной возникновения которого может являться как частичное разложение КГА, так и разложение СаСО3. Косвенно, появление СаО свидетельствует о том, что исходный КГА был смешанного АБ-типа с отношением Са/Р более 1,67. В случае КГА А-типа продуктами разложения являлись бы ТКФ и ТеКФ.

На рис. 27 приведены ИК спектры для образца 7 после разных температур термообработки. Полоса при 3570 см-1, соответствующая колебаниям групп ОН-, исчезает при 11000С. Полосы в области 1650-1300 см-1, соответствующие 3 колебательной моде карбонат-групп, и пик при 873 см-1, отвечающий 2-моде колебаний этих групп, претерпевают существенные изменения, указывающие на термическое разложение КГА с выделением карбонат-групп. Качественно аналогичные изменения в ИК спектрах с температурой выявлены и для других образцов КГА. Введение магния (образцы 4-6) в состав КГА способствует дестабилизации и термическому разложению КГА. Наиболее интересными представляются данные, полученные методом Фурье ИК-спектроскопии конденсата паровой фазы.


Страница: