Биокерамика на основе фосфатов кальция
В работе [199] гранулы диаметром от 200 до 500 мкм получали путем изостатического прессования порошка ГА при давлении от 100 до 200 МПа с последующим дроблением блоков. Недостатком способа является нерегулярная геометрия гранул.
наибольший интерес представляет метод диспергирования жидкости в свободный объем, который позволяет получать гранулы сферической формы, что предпочтительней как для предотвращения воспалительной реакции организма, так и для процесса остеоинтеграции. Гранулирование этим методом заключается в разбрызгивании жидкости, например безводного плава гранулируемого вещества, на капли, приближенно однородные по размеру, и в последующей их кристаллизации при охлаждении в нейтральной среде. В качестве нейтральной среды используют воду, масло, жидкий азот и т.д. В частности, предложенный в работе [198] метод основан на использовании смесей суспензии ГА в растворе связующего (хитозана) и жидкого парафина. Полученную суспензию диспергируют в жидкий парафин и перемешивают лопастной мешалкой со скоростью 500 об/мин, что приводит к образованию гранул сферической формы. В качестве отвердителя использовали глютаральдегид. Однако способ не лишен недостатков, связанных с использованием расплавленного парафина. Известен способ изготовления гранул ГА, основанный на сферическом гелеобразовании. С помощью шприца суспензию ГА и полисахарида (альгината Na или карбоксиметилцеллюлозы) вводят в водный раствор хлористого кальция, который является отвердителем, и затем подвергают интенсивному перемешиванию. Размер гранул зависит от диаметра отверстия иглы и скорости перемешивания [200].
Нами была разработана технология изготовления пористых сферических частиц-гранул на основе ГА, ФГА, КГА, ТКФ и ТКФ-ГА [201-205]. Размер гранул можно варьировать в пределах от 50 до более чем 2000 мкм. Технология – суспензионная, основана на принципе несмешивающихся жидкостей. дисперсный порошок апатита или другого фосфата кальция смешивают с биополимером в определенной концентрации с получением суспензии, которую затем подвергают интенсивному перемешиванию в несмешивающейся жидкости – дисперсионной среде. В качестве такой жидкости может быть использовано растительное масло. На рис. 35 показано, в качестве примера, распределение гранул по их среднему размеру при температурах дисперсионной жидкости 15 и 30 0С, соответственно. Например, средние значения размера гранул составляют 1735 и 1483 мкм при температуре 15 0С и скоростях вращения 200 и 500 мин-1, соответственно. Повышение температуры до 30 0С снижает эти значения до 1187 и 670 мкм, соответственно, вследствие уменьшения вязкости жидкости. Таким образом, технология позволяет легко варьировать размеры гранул в широких пределах. Большое влияние на размер гранул оказывает удельная поверхность исходного порошка. С увеличением удельной поверхности порошка ГА размер гранул уменьшается. При этом добавки, например ФА до 10 масс. % в ГА, не влияют на процесс гранулообразования. Термическая обработка отвержденных гранул приводит к выжиганию биополимера, формированию системы открытых взаимосвязанных пор и к усадке гранул. Пористость около 70 об.% достигается при малых соотношениях ГА/биополимер и при низких температурах термообработки (около 11000С). Доминирующая популяция относится к порам размером 0,1-5 мкм, относительное их содержание в общем, количестве открытых пор составляет до 60%. На рис. 36 приведены микрофотографии гранул ГА и их микроструктура, полученных по данной технологии. Однако при изготовлении гранул α-ТКФ наблюдается значительной разница в микроструктуре образцов керамики спеченной при 1100 и 13000С, что показано на рис. 37. Установлено, что с повышением температуры спекания резко снижается пористость образцов до 40 %, а также наблюдается значительный рост частиц порошка. Кроме того, получаемые гранулы α-ТКФ не имеют сферической формы (Рис. 38).
Деструкция материалов на основе ГА внеклеточными жидкостями организма является одним из ключевых вопросов при разработке материалов как для локализованной доставки лекарственных препаратов в организм, так и для костной имплантации. Нами выполнено сравнительное исследование растворения гранул ГА, α-ТКФ и композиционных бифазных материалов в изотоническом 0,1М растворе хлорида натрия в течение до 28 дней. Исходные материалы: пористые гранулы с удельной поверхностью приблизительно 0,5 м2/г, средним размером 100-300 мкм и содержанием пор размером 0,1-10 мкм примерно 60 об.%. Результаты представлены на рис. 39. На начальной стадии зависимости хорошо аппроксимируются логарифмической функцией:
c=Alnt, (51)
где А некоторая постоянная.
Гранулы имеют высокую начальную скорость растворения в течение первых 5 дней, а затем процесс растворения замедляется, переходит в экспоненциальный, а затем в стационарный режим ввиду достижения состояния насыщенного раствора. Наиболее растворимыми являются гранулы из α-ТКФ, наименее – гранулы из ГА. С повышением содержания ТКФ в композиционных гранулах ГА-ТКФ скорость их растворения возрастает. Установлено, что не происходит образования новых кристаллических фаз при выдержке образцов в растворе (Рис. 40). Уменьшение интегральной величины пиков ТКФ и ГА свидетельствует о растворении обеих составляющих композита, однако растворение ТКФ в гранулах происходит в большей степени, чем ГА. Предполагается [206], что ТКФ первоначально подвергается гидролизу с образованием ГА. ГА, взаимодействуя с водой, конгруэнтно растворяется по реакции:
Ca10(PO4)6(OH)2 (тв) Þ 10Са2+ (ж) + 6РО43- (ж) + 2ОН- (ж)(52)
В растворе ионы Са2+, группы РО43- и ОН- могут взаимодействовать между собой. В нейтральной и кислой средах взаимодействие фосфат-ионов с протонами приводит к образованию НРО42-
6РО43- (ж) + Н+ (ж) Þ 6НРО42- (ж)(53)
Эти группы могут взаимодействовать с частью ионов кальция, продукт взаимодействия осаждается в форме менее растворимого СаНРО4:
6НРО42- (ж) + 6Са2+ (ж) Þ 6СаНРО4 (тв)(54)
Кроме того, группы ОН- могут взаимодействовать с оставшейся частью ионов кальция с образованием малорастворимого гидроксида:
4Са2+ (ж) + 8ОН- (ж) Þ 4Са(ОН)2 (тв) (55)
Продукты реакций осаждаются на поверхности ГА в растворе. Группы НРО42- на поверхности керамики обусловливают прогрессивно снижающееся значение отношения Са/Р. Таким образом, с увеличением времени выдержки состояние поверхности смещается от нейтрального в сторону кислотного (с дефицитом по кальцию) состояния.
Такое поведение по типу растворение-осаждение может, по-видимому, иметь место в условиях in vivo при имплантации керамики на основе ГА и, в частности, определять биоактивные качества керамики.
В медицинской практике керамические гранулы находят применение в следующих областях: реконструктивно-восстановительная хирургия, стоматологии и в системе доставки лекарственных препаратов [207-213].
В реконструктивно-восстановительной хирургии гранулы используются при лечении пародонта (локальный и генерализованный пародонтит средней и тяжелой степени, идиопатическая патология пародонта при инсулиннезависимом сахарном диабете), околокорневых, фолликулярных и резидуальных кист челюстей и т.д. Например, в клинике челюстно-лицевой хирургии и стоматологии Военно-медицинской академии при проведении операции цистэктомии с удалением кист челюстей и заполнением послеоперационной костной полости отдают предпочтение гранулированному ГА. Гранулы также используют в сочетании с кальций фосфатными цементами для достижения высокой прочности имплантата.