Технология хранения продукции растениеводстваРефераты >> Ботаника и сельское хоз-во >> Технология хранения продукции растениеводства
Самосортирование — явление отрицательное, так как при этом в зерновой массе образуются участки, неоднородные, по физиологической активности, скважистости и т. д. Скопление легких примесей и пыли создает больше предпосылок к возникновению процесса самосогревания.
Скважистость.
В зерновой массе имеются межзерновые пространства — скважины, заполненные воздухом. Скважины составляют значительную часть объема зерновой насыпи и оказывают существенное влияние на другие ее физические свойства и происходящие в ней физиологические процессы.
Так, воздух, циркулирующий по скважинам, конвекцией способствует передаче тепла и перемещению паров воды. Значительная газопроницаемость зерновых масс позволяет использовать это свойство для продувания их воздухом (при активном вентилировании) или вводить в них пары различных химических веществ для обеззараживания (дезинсекции). Запас воздуха, а следовательно, и кислорода создает в зерновой массе на какой-то период (иногда очень длительный) нормальный газообмен для ее живых компонентов.
Величина скважистости зерновой массы зависит в основном от факторов, влияющих на натуру зерна. Так, с увеличением влажности уменьшается сыпучесть, а, следовательно, и плотность укладки. Крупные примеси обычно увеличивают скважистость, мелкие легко размещаются в межзерновых пространствах и уменьшают ее. Зерновые массы, содержащие крупные и мелкие зерна, обладают меньшей скважистостью. Выравненные зерна, а также шероховатые или со сморщенной поверхностью укладываются менее плотно.
В связи с самосортированием скважистость в различных участках зерновой массы может быть неодинаковой, что приводит к неравномерному распределению воздуха в отдельных ее участках. При большой высоте насыпи зерновых масс происходит их уплотнение и скважистость уменьшается. Зная объем, занимаемый зерновой массой, и ее скважистость, легко установить объем находящегося в скважинах воздуха. Это количество воздуха при активном вентилировании принимается за один обмен. Скважистость (S) определяют по формуле:
где W — общий объем зерновоз массы; v — истинный объем твердых частиц зерновой массы.
Сорбционные свойства.
Зерно и семена всех культур и зерновые массы в целом являются хорошими сорбентами. Они способны поглощать из окружающей среды пары различных веществ и газы. При известных условиях наблюдается обратный процесс — выделение (десорбция) этих веществ в окружающую среду.
В зерновых массах наблюдаются такие сорбционные явления, как адсорбция, абсорбция, капиллярная конденсация и хемосорбция. Их значительная способность к сорбции объясняется двумя причинами: капиллярно - пористой коллоидной структурой зерна или семени и скважистостью зерновой массы.
Исследование структуры зерна и семян различных культур показало, что между их клетками и тканями имеются макро- имикрокапилляры и поры. Диаметр макропор равен 10-3—10-4 см, а микропор — 10-7 см. Стенки макро- и микрокапилляров во внутренних слоях зерна являются активной поверхностью, участвующей в процессах сорбции молекул паров и газов. Кроме того, по системе макро- и микрокапилляров перемещаются ожиженные пары.
Принято, что активная поверхность зерна пшеницы и ржи превышает его истинную примерно в 20 раз.
Равновесная влажность.
Влагообмен между зерновой массой и соприкасающимся с ней воздухом в той или иной степени идет непрерывно. В зависимости от параметров воздуха (его влажности и температуры) и состояния зерновой массы влагообмен происходит в двух противоположных направлениях: 1) передача влаги от зерна к воздуху; такое явление (десорбция) наблюдается, когда парциальное давление водяных паров у поверхности зерна больше парциального давления водяных паров в воздухе; 2) увлажнение зерна вследствие поглощения (сорбции) влаги из окружающего воздуха; этот процесс происходит, если парциальное давление водяных паров у поверхности зерна меньше парциального давления водяных паров в воздухе.
Влагообмен между воздухом и зерном прекращается, если парциальное давление водяного пара в воздухе и над зерном одинаково. При этом наступает состояние динамического равновесия. Влажность зерна, соответствующая этому состоянию, называется равновесной. Как показали исследования, для достижения полного равновесия требуется стационарный режим в течение довольно длительного времени (9 суток, а иногда и намного больше).
При длительном хранении зерновых масс с повышенной влажностью в условиях низкой относительной влажности воздуха происходит постепенное снижение их влажности. Наоборот, сухая зерновая масса при хранении в складе с воздухом, более насыщенным водяными парами, увлажняется, и ее масса увеличивается. Подобные изменения носят и сезонный характер, так как насыщенность воздуха влагой в разные месяцы различна.
Равновесная влажность зерна и семян зависит также от температуры воздуха: с понижением ее величина равновесной влажности возрастает. При снижении температуры с 30°до 0 °С равновесная влажность увеличивается на 1,4 %.
Нужно также иметь в виду, что равновесная влажность отдельных зерен или семян в зерновой массе неодинакова вследствие различия их размеров, выполненности и т. д. Даже отдельные анатомические части зерновки или семени характеризуются неодинаковой влажностью.
Процессы сорбции и десорбции протекают в зерновой массе и в связи с различной исходной влажностью входящих в нее компонентов. Это особенно заметно в свежеубранной зерновой массе, где зерна основной культуры и семена сорных растений резко различны по влажности. Имеются многочисленные данные, показывающие быстрое перераспределение влаги между основным зерном и сорняками.
При изучении равновесной влажности зерна было обнаружено и явление сорбционного гистерезиса. У зерна и продуктов его переработки изотерма десорбции в системе координат располагается выше, чем изотерма сорбции. Поэтому равновесная влажность зерна, характеризуемая изотермой сорбции, будет всегда меньше, чем характеризуемая изотермой десорбции, при одной и той же относительной влажности воздуха. Наибольшее расхождение между изотермами сорбции и десорбции наблюдается на участке с относительной влажностью воздуха от 20 до 80 %
Разница в равновесной влажности по изотермам достигает в среднем 1,2—1,3 %.
Рисунок 4.1. Изотермы сорбции и десорбции зерна пшеницы.
Теплофизические характеристики.
Представление о них необходимо для понятия явлений теплообмена, происходящих в зерновой массе, которые необходимо учитывать при хранении, сушке и активном вентилировании.
Теплоемкость. Удельная теплоемкость абсолютно сухого вещества зерна примерно 1,51—1,55 кДж/(кг °С). С увеличением влажности зерна возрастает и его удельная теплоемкость. Так, при влажности зерна пшеницы 20 % его удельная теплоемкость равна 2,22 кДж/(кг °С). Теплоемкость учитывают при тепловой сушке зерна, так как расход тепла зависит от исходной влажности зерна.