Износостойкость трибореактопластов на основе отвержденных эпоксидных смол
Рефераты >> Химия >> Износостойкость трибореактопластов на основе отвержденных эпоксидных смол

При введении бесщелочного стекла структурная сетка эпоксидного олигомера имеет Мc = 240. На щелочном стекле Мс сетки эпоксидного олигомера равна 580.

В связи с влиянием наполнителей на структуру сетки связующего представляло интерес оценить триботехнические характеристики наполненных эпоксидных композитов. Исследовано влияние порошков алюминия, железа, графита и дисульфида молибдена на износ эпоксидных композитов, пластифицированных ДБФ. Было установлено, что при скорости скольжения 0,583 м/с и нагрузке 2 МПа наименьшим износом (2,1 мкм/км) обладает эпоксидный композит, наполненный 10 мас.ч. порошка алюминия. Высокую интенсивность изнашивания имеет эпоксидный композит, содержащий графит.

Для предотвращения взаимодействия макрорадикалов, образующихся при механодеструкции трехмерной сетки связующего, с поверхностью контртела в объем эпоксидных композитов вводят пластификаторы, минеральные масла, консистентные и сухие смазки.

При исследовании фрикционных свойств самосмазывающихся материалов в виде покрытийустановлено, что смазочная способность MoS2 существенно зависит от физического состояния связующего (таблица 11). На основании анализа масс-спектров установлено, что изнашивание твердосмазочных материалов на термореактивном связующем происходит вследствие разрыва основной цепи полимера и зависит от его структуры. В стеклообразном состоянии полимерное связующее имеет больший износ, чем в высокоэластическом состоянии. Это обусловлено тем, что при повышении температуры в зоне трения уменьшается число физических связей между макромолекулами связующего и увеличивается гибкость и подвижность межузловых фрагментов структурной сетки. Последняя причина приводит к снижению износа полимерных композитов. Основным механизмом изнашивания эпоксидных композитов наполненных MoS2, является усталостный износ, при котором рост микротрещин продолжается до определенной критической величины, после чего происходят послойное разрушение материала и образование частиц износа. С учетом термофлуктуационной природы образование микротрещин при усталостном износе было установлено, что процесс изнашивания эпоксидного композита, наполненного MoS2, имеет энергию активации U0 = 86 КДж/моль.

Таблица 11.

Влияние состава атмосферы на интенсивность линейного изнашивания самосмазывающихся композитов [9].

Композит  

Воздух

СО2

Интенсивность изнашивания композитов Ih *103 , мкм/цикл, при Т, °С

25

150

250

25

150

250

350

ВНИИНП-212

ВНИИНП-230

ВНИИНП-250

ВНИИНП-251

0,84

0,1

0,36

0,59

0,18

0,11

0,37

0,15

0,62

0,7

0,9

0,17

0,21

0,07

0,18

0,9

0,11

0,16

0,18

0,3

0,29

0,26

0,19

0,35

1,3

0,8

1,7

0,14

Примечание. Состав композитов: ВНИИНП-212 – мочевиноформальдегидный олигомер + MoS2; ВНИИНП-230 – эпоксидный олигомер + MoS2; ВНИИНП-250 – кремнийорганический олигомер + MoS2; ВНИИНП-251 – ПОЛИАМИД + ГРАФИТ.

Применительно к узлам трения, эксплуатирующимся в инертных газах, исследовали влияние состава атмосферы на изнашивание полимерных материалов, содержащих MoS2 (талблица 12). Интенсивность изнашивания самосмазывающихcя композитов, наполненных МоS2, на воздухе при одинаковых температурах значительно выше, чем в среде СО2. Только у эпоксидного композита интенсивности изнашивания при 25 и 150 °С близки между собой в обеих средах. Для оценки изнашивающей способности самосмазывающихся материалов (износостойкости металлического контртела) измеряли диаметр пятна износа на контртеле (таблица 12). Установлено, что исследуемые композиты наиболее сильно изнашивают контртело при 25 °С на воздухе, а меньше всего в обеих средах при 150 °С.

Таблица 12.

Влияние состава самосмазывающихся материалов на интенсивность линейного изнашивания металлического контртела [9].

Композит  

Воздух

СО2

Интенсивность изнашивания контртела Ih *106, см2/м, при Т, °С

25

150

250

25

150

250

ВНИИНП-212

ВНИИНП-230

ВНИИНП-250

ВНИИНП-251

4,2

2,56

1,1

1,1

0,46

1,3

0,7

1,1

1,4

5,3

2,2

0,83

1,1

0,82

0,8

1,4

0,44

1,1

0,72

0,6

0,51

1,96

0,91

1,1

Существенного повышения износостойкости эпоксидных композитов можно достичь введением оксидов металлов и минеральных оксидных наполнителей. Анализ свойств наполненных эпоксидных композитов показал, что их износостойкость, реологические и физико-механические характеристики связаны с природой, структурными особенностями и свойствами оксидных наполнителей, а также с характером их взаимодействия со связующим. Из таблицы 13 видно, что при введении наполнителей снижается ударная вязкость. Влияние наполнителей на другие показатели эпоксидных композитов неоднозначно. Так, например, при введении талька и нитрида бора значительно уменьшается модуль упругости при сжатии и повышается обусловленный этим износ эпоксидных композитов. При наполнении связующего каолином и оксидом титана несколько возрастает модуль упругости и заметно улучшается износостойкость композита. Причина такого влияния оксидных наполнителей на износостойкость эпоксидных композитов не ясна. В зависимости от концентрации и природы оксиды металлов могут катализировать или ингибировать процесс полимиризации эпоксидных олигомеров в присутствии отвердителей. Это приводит к зависимости физико-механических свойств эпоксидных композитов от природы наполнителя и к обусловленному этой причиной изменению их износостойкости. При этом существенное влияние на износостойкость и физико-механические свойства эпоксидных полимеров оказывает дисперсность оксидного наполнителя.


Страница: