Страница
16
б) Пусть L - произвольный ограниченный линейный функционал на . Тогда из теоремы 4.1 и (67) для любой функции
(С - абсолютная постоянная). Это значит, что L - ограниченный линейный функционал на , а следовательно, найдется функция
с
, (101)
для которой
,
. (102)
В частности, равенство (102) выполняется, если - произвольный атом. Докажем, что
. (103)
Пусть I - произвольный обобщенный интервал, - произвольная функция с
. Тогда функция
,
,
является атомом и в силу теоремы 8 . Поэтому
.
Подбирая в последнем неравенстве функцию оптимальным образом, мы получим, что для любого обобщенного интервала I
,
что с учетом соотношения доказывает оценку (103).
Таким образом, для значение функционала
совпадает со значением ограниченного линейного функционала
на элементе
(см. (99) и уже доказанное утверждение а) теоремы 9). Так как пространство
плотно в
, то, следовательно,
для любой функции
.
Полученное равенство завершает доказательство теоремы 9.
Литература
1. Кашин Б.С., Саакян А.А. Ортогональные ряды — М.: Наука, 1984.—495с.
2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа — М.: Наука, 1989. — 623с.
3. Тер-Крикоров А.М., Шабунин М.И. Курс математического анализа — М.: Наука, 1988. —815с.
4. Бари Н.К. Тригонометрические ряды —М.: Гос. издательство физико-математической литературы, 1961. —936с.
5. Маркушевич А.И. Краткий курс теории аналитических функций - М.: Наука, 1978. — 415с.
6. Дж.Гарнетт Ограниченные аналитические функции — М.: Мир, 1984. - 469с.
7. Фихтенгольц Г.М. Основы математического анализа — М.: Наука, 1964.—т.2,—463с.
8. Вартанян Г.М. Аппроксимативные свойства и двойственность некоторых функциональных пространств — Одесса, 1990 —111с.
*) Мы считаем , что f (x) = 0 , если |x| > p .
*) Так как функция определялась для функций
, заданных на
, то мы дополнительно полагаем
, если
;
при
и
при
.
*) В силу условий а) и в) в определении 9 ,
, поэтому ряд (70) сходится по норме пространства
и п.в.
*) Возможен случай, когда при
.