Атомические разложения функций в пространстве ХардиРефераты >> Математика >> Атомические разложения функций в пространстве Харди
, , где .
Следовательно,
.
Оценка (74), а потому и оценка (72) доказаны.
Необходимость.
Построим для данной функции разложение (70), для которого
.
Пусть функция с такова, что выполнено соотношение (65), и пусть () - нетангенциальная максимальная функция для , т.е.
, , (75')
где - область, ограниченная двумя касательными, проведенными из точки к окружности , и наибольшей дугой окружности , заключенной между точками касания.
Теорема 7 утверждает, что , поэтому нам достаточно найти такое разложение функции на атомы (70), что
, (76)
где постоянные С и () не зависят от . Для построения разложения (70) с условием (76) фиксируем число : пусть, например, . Не ограничивая общности, мы можем считать, что
. (77)
Рассмотрим на отрезке множества
, , (78)
Так как при любом множество точек единичной окружности открыто, то ясно, что при множество (если оно непустое) представимо (единственным образом) в виде суммы непересекающихся обобщенных интервалов:
, при , , . (79)
Положим и при
(80)
Так как конечна для п.в. , то из определения функций , , следует, что для п.в. при , а значит, для п.в.
.
Отсюда, учитывая, что , а следовательно из (80), при , мы находим, что
, (81)
где - характеристическая функция множества . Из (81), учитывая, что , мы для функции получаем следующее разложение:
для п.в. , (82)
где
, , (83)
С помощью функций мы и построим нужное нам разложение вида (70). Прежде всего отметим, что при ,
, . (84)
Докажем теперь, что для п.в.
, , (85)
где постоянная зависит только от числа , зафиксированного нами ранее.
Так как из (65) и (75') для п.в. , то из (77) следует, что
.
Пусть теперь , - один из обобщенных интервалов в представлении (79), тогда из (77) и (78) , и если , - концевые точки дуги () , то , а значит,