Краевые задачи. Методы решения А.Ю.Виноградова. Включая жесткие краевые задачи
Рефераты >> Математика >> Краевые задачи. Методы решения А.Ю.Виноградова. Включая жесткие краевые задачи

Кстати, в приведенной выше формуле осреднению может подвергаться не только матрица А: A=А(х) коэффициентов системы дифференциальных уравнений, но и векторF(t) может рассматриваться на подучастке (x- x) приближенно в виде постоянной величины F)=constant, что позволят вынести его из под знака интеграла, что приводит к совсем простому ряду для вычислений на рассматриваемом подучастке.

То есть все приведенные выше методы Алексея Юрьевича Виноградова очень удачно встраиваются в современную тенденцию высокоскоростных «параллельных вычислений».

J

18. 23 августа 2011: Вычисление вектора частного решения неоднородной системы дифференциальных уравнений.

Вычисление вектора частного решения неоднородной системы дифференциальных уравнений производиться при помощи представления матрицы Коши под знаком интеграла в виде ряда и интегрирования этого ряда поэлементно:

Эта формула справедлива для случая системы дифференциальных уравнений с постоянной матрицей коэффициентов =const.

Для случая дифференциальных уравнений с переменными коэффициентами в приведенной выше формуле для каждого участка может использоваться осредненная матрица коэффициентов системы дифференциальных уравнений.

Рассмотрим вариант, когда шаги интервала интегрирования выбираются достаточно малыми, что позволяет рассматривать вектор на участке приближенно в виде постоянной величины , что позволяет вынести этот вектор из под знаков интегралов:

Известно, что при T=(at+b) имеем

В нашем случае имеем

Тогда получаем .

Тогда получаем ряд для вычисления вектора частного решения неоднородной системы дифференциальных уравнений на малом участке :

19. 02 октября 2011: Авторство.

Мой метод - метод Алексея Юрьевича Виноградова «переноса краевых условий» первоначально был опубликован в Межвузовском сборнике МИРЭА (кажется в 1995 году). МИРЭА это Московский институт радиотехники, электроники и автоматики. Точное название и год выхода статьи можно посмотреть в Ленинской библиотеке в списке литературы моей диссертации. Там у меня только одна статья в МИРЭА. К сожалению, на руках у меня нет экземпляра моей кандидатской диссертации, поэтому не могу привести точное название статьи, но называется она, кажется, что-то вроде «Метод приведения краевых задач к задаче Коши».

13 мая 2011 нашел я в интернете случайно свою старую статью по начальным векторам, в которой я первоначально предложил ортонормировать краевые условия: Вычисление начальных векторов для численного решения краевых задач, А. Ю. Виноградов «Ж. вычисл. матем. и матем. физ.», 1995, 35:1, 156–159. Теперь я эту статью положил на свой сайт www.VinogradovAlexei.narod.ru.

После защиты своей кандидатской диссертации в 1996 году я совсем бросил заниматься наукой и с 1996 года по 2005 год совсем не занимался математикой. И после 1996 года мой отец (доктор физико-математических наук профессор МГТУ имени Баумана Виноградов Юрий Иванович) уже без моего ведома публиковал эти материалы теперь уже как наш совместный с ним метод. Включая, например, публикацию в Докладах Академии наук: А.Ю.Виноградов, Ю.И.Виноградов, Метод переноса краевых условий функциями Коши-Крылова для жестких линейных обыкновенных дифференциальных уравнений. // ДАН. – М.: 2000, т. 373, №4, с. 474-476.

Алексей Юрьевич Виноградов

Кандидат физико-математических наук (1996 года защиты)

Дата рождения: 12 апреля 1970 (а то в интернете много моих полных тезок)

Мои сайты по методам решения краевых задач в интернете:

www.vinogradov-design.narod.ru/math.html

www.vinogradov-best.narod.ru

www.AlexeiVinogradov.narod.ru www.VinogradovAlexei.narod.ru

www.Vinogradov-Alexei.narod.ru www.Vinogradov-Math.narod.ru

20.1. 27 ноября 2011: Метод решения жестких краевых задач без ортонормирования – метод сопряжения участков, выраженных матричными экспонентами –

метод д.ф.-м.н. Юрия Ивановича Виноградова и к.ф.-м.н. Алексея Юрьевича Виноградова.

Этот метод проверен компьютерными расчетами.

Разделим интервал интегрирования краевой задачи, например, на 3 участка. Будем иметь точки (узлы), включая края:

.

Имеем краевые условия в виде:

Можем записать матричные уравнения сопряжения участков:

,

,

.

Это мы можем переписать в виде, более удобном для нас далее:

,

,

.

где - единичная матрица.

Тогда в объединенном матричном виде получаем систему линейных алгебраических уравнений в следующей форме:

.

Эта система решается методом Гаусса с выделением главного элемента.


Страница: