Краевые задачи. Методы решения А.Ю.Виноградова. Включая жесткие краевые задачи
Рефераты >> Математика >> Краевые задачи. Методы решения А.Ю.Виноградова. Включая жесткие краевые задачи

То есть в методе прогонки С.К.Годунова есть проблема нахождения таких начальных значений Y(0), Y(0), Y(0),Y(0), Y*(0) векторов Y(x), Y(x), Y(x),Y(x), Y*(x), чтобы можно было начать прогонку с левого края x=0, то есть чтобы удовлетворялись условия U∙Y(0) = u на левом крае при любых значениях констант c,c,c,c.

Обычно эта трудность «преодолевается» тем, что дифференциальные уравнения записываются не через функционалы, а через физические параметры и рассматриваются самые простейшие условия на простейшие физические параметры, чтобы начальные значения Y(0), Y(0), Y(0),Y(0), Y*(0) можно было угадать. То есть задачи со сложными краевыми условиями так решать нельзя: например, задачи с упругими условиями на краях.

Ниже предлагается формула для начала вычислений методом прогонки С.К.Годунова.

Выполним построчное ортонормирование матричного уравнения краевых условий на левом крае:

U∙Y(0) = u,

где матрица U прямоугольная и горизонтальная размерности 4х8.

В результате получим эквивалентное уравнение краевых условий на левом крае, но уже с прямоугольной горизонтальной матрицей Uразмерности 4х8, у которой будут 4 ортонормированные строки:

UY(0) = u,

где в результате ортонормирования вектор u преобразован в вектор u.

Как выполнять построчное ортонормирование систем линейных алгебраических уравнений можно посмотреть в [Березин, Жидков].

Дополним прямоугольную горизонтальную матрицу Uдо квадратной невырожденной матрицы W:

W = ,

где матрица М размерности 4х8 должна достраивать матрицу Uдо невырожденной квадратной матрицы W размерности 8х8.

В качестве строк матрицы М можно взять те краевые условия, то есть выражения тех физических параметров, которые не входят в параметры левого края или линейно независимы с ними. Это вполне возможно, так как у краевых задач столько независимых физических параметров какова размерность задачи, то есть в данном случае их 8 штук и если 4 заданы на левом крае, то ещё 4 можно взять с правого края.

Завершим ортонормирование построенной матрицы W, то есть выполним построчное ортонормирование и получим матрицу Wразмерности 8х8 с ортонормированными строками:

W= .

Можем записать, что

Y(0) = (М)транспонированная = М.

Тогда, подставив в формулу метода прогонки С.К.Годунова, получим:

Y(0) = Y(0) ∙с + Y*(0)

или

Y(0) = Мс + Y*(0).

Подставим эту последнюю формулу в краевые условия UY(0) = uи получим:

U∙ [ Мс + Y*(0) ]= u.

Отсюда получаем, что на левом крае константы c уже не на что не влияют, так как

U∙ М= 0 и остается только найти Y*(0) из выражения:

UY*(0) = u.

Но матрица Uимеет размерность 4х8 и её надо дополнить до квадратной невырожденной, чтобы найти вектор Y*(0) из решения соответствующей системы линейных алгебраических уравнений:

Y*(0) = ,

где 0 – любой вектор, в том числе вектор из нулей.

Отсюда получаем при помощи обратной матрицы:

Y*(0) = ,

Тогда итоговая формула для начала вычислений методом прогонки С.К.Годунова имеет вид:


Страница: