Нечеткие множества в системах управления
В общем случае показатель размытости нечеткого множества можно определить в виде функционала d(A) со значениями в R (положительная полуось), удовлетворяющего условиям:
d(A) = 0 тогда и только тогда, когда А - обычное множество;
d(A) максимально тогда и только тогда, когда mA(x) = 0.5 для всех xÎE.
d(A)d(B), если A является заострением B, т.е.
mA(x)£mB(x) при mB(x) < 0,5;
mA(x)³mB(x) при mB(x) > 0,5;
mA(x)- любое при mB(x) = 0,5.
d(A) = d() - симметричность по отношению к 0,5.
d(AÈB)+d(AÇB) = d(A)+d(B).
Замечание. Приведенная система аксиом при введении конкретных показателей размытости часто используется частично, т.е., например, ограничиваются свойствами P1, P2 и P3, либо некоторые свойства усиливаются или ослабляются в зависимости от решаемой задачи.
Рассмотрим индексы нечеткости (показатели размытости), которые можно определить, используя понятие расстояния.
Обычное множество, ближайшее к нечеткому
Пусть A - нечеткое множество. Вопрос: какое обычное множество AÌE является ближайшим к A, т.е. находится на наименьшем евклидовом расстоянии от нечеткого множества A. Таким подмножеством, обозначаемым A, является подмножеством с характеристической функцией:
.
Обычно принимают mA(xi) = 0, если mA(xi) = 0,5.
Используя понятие обычного множества, ближайшего к нечеткому, введем следующие индексы нечеткости нечеткого множества А.
Линейный индекс нечеткости:
Здесь r(A, A) - линейное (хеммингово) расстояние, множитель - обеспечивает выполнение условия 0<d(A)<1.
Квадратичный индекс нечеткости
, 0<d(A)<1.
Здесь e(A, A) - квадратичное (евклидово) расстояние.
Замечания.
1. Мы ввели линейный и квадратичный индексы нечеткости, используя понятие расстояния и понятие обычного множества, ближайшего к нечеткому. Эти же индексы можно определить, используя операцию дополнения, следующим образом:
- линейный индекс,
- квадратичный индекс.
2. Отметим следующие свойства, связанные с ближайшим обычным множеством:
АÇВ=АÇВ,
АÈВ=АÈВ;
а также "xÎE:|mA(xi)-mA(xi)|=, откуда для линейного индекса нечеткости имеем:
,
т.е. в этом представлении становится очевидным, что d(A)=d().
3. Нечеткое множество с функцией принадлежности иногда называют векторным индикатором нечеткости.
Оценка нечеткости через энтропию
Ограничимся случаем конечного универсального множества. Энтропия системы с n состояниями e1,e2, ., en, с которыми связаны вероятности p1,p2, ., pn определяется выражением:
H(p1, p2, ., pn) = - pi ln pi, Hmin = 0, Hmax = 1.
В случае нечетких множеств положим:
pA(xi) =
Тогда общую формулу, позволяющую подсчитать энтропию по нечеткости, можно записать в следующем виде:
H(pA(x1), pA(x2), ., pA(xn)) = - pA(xi) ln pA(xi).
Замечание. Попытки использования энтропии в теории нечетких множеств (в приведенном выше виде) показали, что это не лучший способ оценки. Однако работы по обобщению понятия энтропии для нечетких множеств продолжаются.
Принцип обобщения
Принцип обобщения - одна из основных идей теории нечетких множеств - носит эвристический характер и используется для расширения области применения нечетких множеств на отображения. Пусть X и Y - два заданных универсальных множества. Говорят, что имеется функция, определенная на X со значением в Y, если, в силу некоторого закона f, каждому элементу XÎX соответствует элемент yÎY.
Когда функцию f: X®Y называют отображением, значение f(x)ÎY, которое она принимает на элементе xÎX, обычно называют образом элемента x.
Образом множества АÌХ при отображении с®Y называют множество f(A)ÌY тех элементов Y, которые являются образами элементов множества А.
Замечание. Мы напомнили классическое определение отображения, которое в теории нечетких множеств принято называть четким отображением, т.к. наряду с ним мы введем понятие нечеткого отображения (или нечеткой функции).
Будем говорить, что имеется нечеткая функция f, определенная на X со значением в Y, если она каждому элементу xÎX ставит в соответствие элемент yÎY со степенью принадлежности mf(x,y). Нечеткая функция f определяет нечеткое отображение f:XY.
Принцип обобщения заключается в том, что при заданном четком f:X®Y или нечетком f:XY отображении для любого нечеткого множества А, заданного на Х, определяется нечеткое множество f(A) на Y, являющееся образом A.
Пусть f:X®Y заданное четкое отображение,
а A = {mA(x)/х}- нечеткое множество в Х. Тогда образом А при отображении f является нечеткое множество f(A) на Y с функцией принадлежности:
mf(A)(y) = mA(x); yÎY,
где f -1(y)={x/f(x)=y}.
В случае нечеткого отображения f:XY, когда для любых xÎX и yÎY определена двуместная функция принадлежности mf(x,y), образом нечеткого множества А, заданного на Х, является нечеткое множество f(A) на Y с функцией принадлежности:
mf(A)(y) = min(mA(x), mf(x,y)).
Замечание. Мы не приводим примеров использования принципа обобщения. Предлагаем подумать, каким образом можно определить нечеткое число и как с помощью принципа обобщения (не забывая декартова произведения) и классических операций возведения числа в степень(одноместная), сложения и умножения (двуместные) получать соответствующие нечеткие результаты. К нечетким отображениям мы вернемся, когда будем рассматривать понятие нечеткого отношения.