Основы химии
Разработка теории цепных реакций начата Боденшнейном (1913). Однако математическая теория и физические основы течения цепных реакций заложены и развиты в работах Н.Н.Семенова, Н.М.Эммануэля, Хиншельвуда. Разработанная ими теория цепных процессов получила широкое применение в современной технике и энергетике.
Глава 11.
Химическое равновесие.
11.1. Причины обратимости химических процессов.
Самопроизвольно протекающие химические реакции можно разделить на две группы: необратимые и обратимые.
Необратимые реакции протекают только в одном направлении. В этих реакцииях исходные вещества (реагенты) практически полностью превращаются в стехиометрическом состоянии в продукты реакции. Необратимости реакции способствуют условия, при которых хотя бы один из продуктов реакции уходит из реакционной зоны в виде осадка, газообразного вещества или представлять собой малодиссоциирующее в реакционной среде вещество.
Примером необратимых реакций могут быть следующие взаимодействия:
AgNO3+NaCl=AgCl↓+NaNO3
Na2CO3+2HCl=CO2↑+NaCl+H2O
Соблюдается такое правило: чем менее растворимым является продукт реакции, чем труднее диссоциирует труднодиссоциируемое соединение, тем полнее протекает необратимая реакция. Необратимую реакцию нельзя повернуть в обратную сторону без ввода новых реагентов и без затраты энергии.
Существует множество реакций, которые не идут до полного превращения реагентов в продукты, взаимодействие как бы прекращается на определенном этапе. В реакционной смеси обнаруживаются как продукты реакции, так и исходные вещества. На самом деле реакция не прекращается, а только с определенного момента продукты реакции начинают взаимодействовать и выделять исходные вещества, т.е. начинает протекать обратная реакция. Такие реакции называются обратимыми. Обратимыми называются реакции, которые при данных условиях одновременно протекают в двух взаимно противоположных направлениях.
аА+вВ↔сС+dD
К обратимым относятся следующие реакции.
N2+3H2↔2NH3
H2+J2↔2HJ
2SO2+O2↔2SO3
В обратимых реакциях вместо знака равенства ставится взаимнонаправленные стрелки, указывающие на обратимость процесса.
Обратимые реакции характеризуются химическим равновесием.
Под химическим равновесием понимают не изменение во времени (при постоянных давлении, объеме и температуре) состояние системы, содержащей вещества, способные к химическому взаимодействию.
Различают истинное и кажущееся (метастабильное) равновесия.
Истинное химическое равновесие характеризуется тремя признаками:
¾ в системе не происходит видимых во времени изменений при отсутствии внешних воздействий;
¾ равновесие достигается как при прямой, так и при обратной реакции;
¾ самое малое внешнее воздействие легко смещает равновесие в ту или другую сторону.
Метастабильным (кажущимся) равновесием является таким состоянием системы, при котором из-за некоторых “тормозящих” факторов химическая реакция не доходит до состояния истинного равновесия. Торможение химической реакции может происходить как в самом начале процесса, так и в некоторый момент, если возникают тормозящие факторы. Метастабильное равновесие отличается от истинного тем, что при устранении “тормозящих” факторов, реакция идет до достижения истинного равновесия. Для истинного равновесия ΔG0х.р.=0, а для метастабильного ΔG0х.р.<0. Термодинамическим условием наступления истинного является ΔG0х.р.=0.
Хотя при химическом равновесии ΔG0=0, но взаимодействие веществ не прекращается реакция продолжается. Молекулы реагентов двигаются, соударяются, образуют новые вещества которые от соударения снова распадаются на исходные вещества. Равновесное состояние – это такое состояние, при котором число образовавшихся молекул продукта реакции равно числу распавшихся молекул на исходные вещества.
Состояние химического равновесия любой равновесной системы сохраняется до тех пор, пока сохраняются в неизменном виде внешние факторы (температура, давление) и в систему не вводятся дополнительно никакие вещества (ни реагенты, ни продукты реакции).
Рассмотрим химическое равновесие с точки зрения закона действующих масс. Для обратимого процесса, изображенного в общем виде:
V
аА+вВ↔сС+dD
V
Скорость прямой реакции (V) с течением времени уменьшается, а скорость обратной – увеличивается (V) (Рис.11.1.)
V
V
V=V
равновесие Рис.11.1.
V
время
Запишим кинетические уравнения прямой и обратной реакции.
V=K1[A]a[В]в
V=K2[C]c[D]d
Для состояния равновесия V=V
Приравняем правые части кинетических уравнений
K1[A]a[В]в= K2[C]c[D]d
Берем отношения константы скоростей
K1/K2=[C]c[D]d /[A]a[В]в
Заменим отношение постоянных величин констант скоростей K1/K2 на постоянную величину К, называемую константой равновесия. Получим:
К=[C]c[D]d /[A]a[В]в
Для конкретной равновесной системы
N2(г)+3Н2(г)↔2NH3(г)
выражение константы равновесия будет следующим
К=[NH3]2/[N2][Н2]3
Для равновесных систем закон действующих масс может быть сформулировать так: Химическое равновесие устанавливается, когда произведение концентраций продуктов реакции, возведенных в степени, равные стехиометрическим коэффициентам, деленное на произведение концентраций реагентов, возведенных в соответствующие степени, становится постоянной величиной при определенных условиях.
Константа равновесия является количественной характеристикой химического равновесия. Она не зависит от начальных концентраций реагирующих веществ, но зависит от температуры. Константа равновесия не зависит также и от пути реакции, ее механизма, а определяется только значением равновесных концентраций реагентов и продуктов реакций.
Зная величину константы равновесия и исходные концентрации реагентов можно расчитать равновесные концентрации всех веществ.
Константа равновесия химических реакций связана со стандартным изменением энергии Гиббса этой реакции ΔG0 следующим уравнением.
ΔG0= -2,3RTlgKT
При температуре 250С (Т=298К)
ΔG0298= -5,69lgK298 (кДж/моль)
11.2. Факторы, влияющие на химическое равновесие.
Достижение истиного химического равновесия для химического процесса энергетически выгодно. (т.к. ΔG =0). Однако для промышленной технологии установление равновесия между продуктами реакции и реагентами экономически невыгодно, так как снижает выход конечного продукта. Это ставит перед химиками задачу смещения равновесия в сторону получения максимального количества продукта реакции. Такого эффекта можно добиться изменением условий, при которых установлено равновесие.
Экспериментально определено, что при изменении концентрацй веществ, давления в реакторе, температуры проведения процесса, изменяется скорость как прямой, так и обратной реакции. Равновесие в системе нарушается и происходит его смещение в сторону той реакции, скорость которой больше. Спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым (изменившимся) условиям.