Основы химии
Н
С
О
ОН
Межмолекулярная водородная связь может образовываться как между молекулами одного и того же вещества (H – F … H – F; H2О … H2О; NH3 … NH3), так и между молекулами различных веществ (H3N … H2О; HF … H2О).
Водородная связь между молекулами аммиака и воды приводит к образованию гидрата аммиака H3N . H2О. В случае молекул аммиака и хлористого водорода межмолекулярное взаимодействие сопровождается ионизацией HCl и переходом водородной связи в донорно – акцепторную.
Ассоциация молекул, обусловленная образованием водородной связи, происходит в газообразном состоянии веществ, жидкостях и твердой фазе. Так, в парах фтористого водорода существуют молекулы (HF)n, где n=4,5 и даже 6. Этот полимер имеет следующую структуру.
F F
H H H H H
F F F
Образованием водородной связи можно объяснить существование очень устойчивого аниона НF2–, состоящего из двух ионов F–, соединенных протоном (F … H – F)–. Аналогичный ион НCl2– мало cтабилен, так как электроотрицательность хлора ЕСl=3 значительно ниже электроотрицательности фтора ЕF =4.
Благодаря водородной связи, например, муравьиная кислота в газообразной фазе существует в виде димера. O … H–O
H–C C–H
O–H … O
В жидкой фазе ряд органических кислот (муравьиная, уксусная, хлоруксусная) образуют ассоциаты двух типов: цепи и циклические.
В твердом состоянии все эти кислоты образуют цепные молекулы.
… O
C–CH2Cl
O … HO
ClH2C–C
OH … O
C–CH2Cl
O … HO
ClH2C–C–OH …
Cпособность молекул к ассоциации отличает воду, аммиак, спирт и другие жидкости от неассоциированных жидкостей, например, углеводородов. Ассоциация приводит к повышению температуры плавления, температуры кипения, теплоты парообразования, изменению растворяющей способности и т.д. Если бы вода не образовывала ассоциатов, то имела бы температуру замерзания –100 0С, а температуру кипения –80 0С. (рис.4.35.)
Водородные связи в структуре воды и льда играют важную роль. В кристалле льда (Н2О)n каждая молекула воды тетраэдрически соединена водородными связями с четырьмя ближайшими к ней молекулами. Такую структуру в плоскостном изображении можно представить следующей схемой.
Н
Н–О
Н Н
О–Н … О–Н … О–Н
Н Н–О
Н
Это создает ажурную структуру, далекую от плотной упаковки. Поэтому лед имеет небольшую плотность и значительную рыхлость.
При плавлении льда водородные связи частично разрушаются (примерно на 10%). Это несколько сближает молекулы, поэтому вода плотнее льда. Нагревание воды, с одной стороны, приводит к ее расширению, т.е. к увеличению объема, с другой стороны, вызывает дальнейшее разрушение водородных связей и тем самым уменьшает объем. В результате плотность воды проходит через максимум при температуре +4 0С. Считают, что при +4 0С вода содержит ассоциаты из двух молекул (Н2О)2, связанных двумя водородными связями. О … Н Н
Н Н … О
Которые и обуславливают наибольшую плотность воды (равную 1г/см3) при +4 0С. Дальнейшее повышение температуры приводит к расширению воды и к разрыву водородной связи. Молекулы водяного пара почти не ассоциированны.
Водородная связь играет большую роль в процессах растворения. Растворимость веществ во многом зависит от их способности образовывать водородные связи с растворителем.
Водородная связь проявляется почти повсеместно: и в неорганических веществах, и в органических, в белках, в полимерах, в живых организмах. Предполагают, что и действие памяти связано с хранением информации в конфигурациях с Н–связями. Поэтому в последнее время водородная связь стала объектом дополнительного исследования.
4.7. Металлическая связь.
Металлическая связь по своей модели существенно отличается от ионной и ковалентной: она характеризуется взаимодействием положительных ионов кристаллической решетки металла и свободных электронов, не связанных с определенными ионами, свободно перемещающихся в пределах кристаллической решетки. Положительно заряженные ионы металлов располагаются в узлах кристаллической решетки, а между ними находятся как бы “коридоры”, заполненные свободными электронами, перемещающимися по всему объему металла (рис.3.36.).
Металлическая связь возможна и в жидком, и в твердом состоянии веществ.
Рис.3.36. Схема металлической решетки.
Экспериментальные изучения металлических решеток показывают, что металлы имеют простую, но плотную структуру, каждая частица окружена шестью или восемью другими. Так, в натрии единственный валентный электрон должен принимать участие в восьми связях, т.е. электрон не локализован. Каждый электрон перемещается в кристалле, и каждая частица окружена электронами, которые не принадлежат исключительно и постоянно ей. Металлическую решетку натрия можно представить в виде решетки из ионов Na+, которая погружена в облако свободных электронов. Связь обеспечивается электростатическим притяжением между положительными ионами и электронным облаком. Такая модель позволяет объяснить некоторые свойства металла. Металлическая связь слабее ковалентной связи; металлическую решетку можно деформировать (тягучесть, ковкость металлов), но вырвать атом из такой решетки трудно; об этом свидетельствуют, в частности, высокие температуры кипения металлов: 3570С (Hg), 8800С (Na) и 30000С (Fe) и т.д.
Электронное облако внутри решетки легко приводится в движение с помощью электрического поля; следовательно, металл – хороший проводник электричества, однако вырвать электрон из металла трудно, поскольку между группировкой положительных ионов и электронами действуют значительные силы притяжения.
Большая тепловая проводимость металлов тоже объясняется облаком подвижных электронов. Если часть металла нагрета, то кинетическая энергия электронов в этой области возрастает. Электроны распространяются по всему металлу, таким образом, растет температура во всей решетке.
Рассмотрим металлическую связь с позиций метода молекулярных орбиталей.
Атомы металлов содержат на внешних квантовых уровнях мало электронов и много вакантных орбиталей. При объединении атомов в кристаллическую решетку атомные орбитали металлов объединяются в молекулярные. Число молекулярных орбиталей равняется сумме орбиталей отдельных атомов. Если бы учитывались только s- и р-орбитали внешних уровней, то в этом частном случае при содержании в кристалле числа атомов (только в 1см3 N=1022 – 1023 атомов) образуется 4N молекулярных орбитали. В каждом атоме одна s-орбиталь и три р-орбитали, следовательно общее число орбиталей (1+3)N=4N.