Основы химии
Рефераты >> Химия >> Основы химии

Природа вещей такова, что частицам (молекулам, атомам, ионам,…) всегда присуще стремление к беспорядочному движению, в результате которого система стремится перейти из более упорядоченного состояния в менее упорядоченное. Возрастание степени беспорядка всегда влечет за собой возрастание энтропии (как функции беспорядка).

ΔS =Rln беспорядок в состоянии (II)/ беспорядок в состоянии (I)=Q/T

В конце прошлого века Больцман приписал энтропии статистический смысл.

S=KlnW

Здесь К – константа Больцмана К=R/N (R – газовая постоянная, N – число Авогадро), W – термодинамическая вероятность системы.

Термодинамическая вероятность системы равна числу микросостояний, которые необходимы для реализации данного макросостояния.

Единица измерения энтропии Дж/мольК. Энтропия растет с повышением температуры, при плавлении твердого вещества, при кипении жидкости, при переходе вещества из состояния с меньшей энергии в состояние с большей энергии и т.д.

В отличии от энтальпии для энтропии возможны экспериментальные определения абсолютных значений. Поэтому для стандартных энтропий образования обозначают не ΔS0обр., а S0обр. Значком ΔS0 обозначают изменение энтропии в результате химического процесса.

Стандартная энтропия образования вещества – это абсолютная энтропия, соответствующая стандартному состоянию вещества при данной (стандартной температуре 298К). Обозначают ΔS0298.

Рассмотрим величину энтропии вещества при абсолютном нуле. Возмем правильно образованный кристалл любого чистого вещества (без примесей) и будем понижать температуру. Энтропия будет уменьшаться. При Т=0 число колебаний равно единице. Кристалл замерзает. При абсолютном нуле энтропия правильно образованного кристалла любого вещества в чистом виде( состоянии) равна нулю (S=0). Но если есть примеси или искажение ( деффекты) решетки, то энтропия не равна нулю(S≠0). Имеем остаточную энтропию S0. При Т≠0, энтропия тоже не равна нулю. Отрицательных энтропий нет.

Изменение энтропии в химических реакциях вычисляют как разность между энтропиями конечного и начального состояний системы. Расчет ΔS0х.р. производится таким же приемом как и расчет ΔН0х.р., т.е. по следствию из закона Гесса.

ΔS0х.р.= ΣS0обр.(к.п.) – ΣS0обр.(ис. в-в.).

Энтальпия и энтропия отражают два противоположно направленных процесса любой системы. Если ΔН отражает в основном взаимодействие атомов в молекуле, стремление простых молекул к объединению в более крупные, т.е. стремление системы к состоянию с минимальным значением энергии, то ΔS отражает совсем противоположную тенденцию а именно, стремление к разрушению агрегатов и к беспорядочному расположению частиц.

Достижение системой минимальной энергии может быть только при ΔS=0. При ΔН=0 система самопроизвольно переходит в наиболее неупорядоченное состояние.

Стремление системы к минимальной энергии заставляет частицы взаимодействовать друг с другом и образовывать устойчивые агрегаты с наименьшим объемом, а тепловое движение расталкивает частицы увеличивая объем системы. В состоянии равновесия обе тенденции становятся равными, фактор энтальпии ΔН и фактор энтропии ΔS компенсирует друг друга.

Поскольку ΔН измеряется в кДж/моль а ΔS измеряется в Дж/мольК, от для их количественного сопоставления необходимо привести к одинаковым единицам. Для этого ΔS умножают на Т. Получается равенство:

ΔН=ТΔS

Если брать по отдельности, то химический процесс будет самопроизвольно протекать в сторону уменьшения общего запаса энергии системы и в сторону увеличения беспорядка в расположении отдельных частиц. Это две противоположно направленных тенденции любого химического процесса. Возникает вопрос, как их объединить и получить количественный критерий принципиальной осуществимости процесса. Критерий, с помощью которого можно определить, как далеко идет процесс, нельзя ли увеличить степень превращения исходных веществ в продукты реакции, как влияет на течение процесса температура, давление и другие факторы, можно ли заставить изучаемую реакцию протекать в обратном направлении. Такой критерий ввел в термодинамику американский ученый Гиббс в виде новой термодинамической функции, в последствии названной энергией Гиббса, которую обозначают буквой G. Для химического процесса ΔG. Величина ΔG связана с ΔН и ΔS следующим соотношением:

ΔG=ΔН – ТΔS

а) Если ΔG<0, то это есть условие возможности самопроизвольного протекания реакции в прямом направлении.

б) Если ΔG>0, протекание реакции в прямом направлении не возможно.

в) Если ΔG=0, наступает равновесие.

Следовательно, свободная энергия Гиббса является критерием протекания химического процесса. Мерой химического сродства является убыль G, т.е. –ΔG. Чем ΔG меньше нуля, тем дальше система от состояния химического равновесия, тем более она реакционноспособна. Величину ΔG называют “Свободной энергией” Гиббса. Что надо понимать под “Свободной энергией”? Свободная энергия – это часть внутренней энергии, которая может быть превращена в работу в данных условиях.

–ΔG=Аmax – pΔV=A’max

Убыль энергии Гиббса в изотермическом процессе равна максимальной работе (Аmax) за вычетом работы расширения (pΔV), т.е. максимально полезной работе (A’max).Если из выражения G=H–TS найти TS=H–G , то получим разность (H–G). Эта разность между внутренней и свободной энергией называют “связанной энергией”. Она равна произведению энтропии на температуру. Связанная энергия – это та часть внутренней энергии, которая ни при каких условиях в работу превращена быть не может. Если из предыдущего выражения получим “S”

S=H–G/T

то можно сделать вывод, что энтропия равна доли связанной энергии (H–G) отнесенной к единице температуры.

О возможной направленности химического процесса можно судить по знакам изменения функций ΔН и ΔS. Влияние знака при ΔН и ΔS на направление протекания химического процесса представлено в следующей таблице.

Табл.8.1.

Знак изменения функции

Направление самопроизвольного протекания реакции

ΔН

ΔS

ΔG

+

Реакция протекает в прямом направлении при любых температурах. Она необратима

+

+

В прямом направлении реакция невозможна ни при какой температуре. Она необратима. Может протекать только в обратном направлении.

±

Реакция обратима. В прямом направлении реакция возможна при низких температурах.

+

+

±

Реакция обратима. В прямом направлении реакция возможна при высоких температурах.


Страница: