Педагогика в начальных классах
Рефераты >> Педагогика >> Педагогика в начальных классах

1. На склад привезли 3 т картофеля.

2. Сколько цветов в букете?

3. На празднике было 20 красных шаров, 10 зеленых и 15 синих. Сколько всей шаров было на празднике?

4. На сколько ящик массой 15 кг тяжелее ящика массой 8 кг?

5. В вазе 5 яблок и 7 груш. Найди общее количество фруктов.

С пунктами 1 и 2 не возникает пробле­мы, так как в первом нет вопроса, а во вто­ром нет данных ("ничего неизвестно"). Текст под номером 3 позволяет сформулировав основные элементы задачи - условие и воп­рос. А дальше, не давая детям опомниться вычеркнем тексты под номером 4 ("в нем нет условия") и номера 5 ("нет вопроса") и попросите оценить ваши действия. При внимательном рассмотрении окажется, что ус­ловие и вопрос задачи могут быть сформу­лированы в одном вопросительном предло­жении, а бывает и так, то вопрос "спрятан" в указание совершить какие-либо действия. Итак, казалось бы, простой вопрос о задаче открывает целую серию исследовательских уроков. Они будут продолжены по мере на­копления возможных оснований для сравне­ния и классификации задач. Завершить дан­ный урок можно открытием "маленькой тай­ны" (чем успокоим того ребенка, которого в задаче пока волнуют только действующие лица): задача имеет сюжет. Это слово может стать вашим "подарком" детям, а так как при­нято благодарить за презент, попросите ре­бят придумать разные задачки на какую-либо тему (тему дети могут выбрать сами).

Чтобы избавиться от "текстового страха", поставим перед собой первую задачу: научиться читать так, чтобы ви­деть за скорлупой слов математическое ядро. В схеме решения зада­чи появляется первый шаг: "Читаю задачу". Для учителя не является секретом, что текст читается дважды: цель первого прочтения -общее знакомство с задачей, второго - структурирование текста с помощью логических пауз, выделения голосом данных. Наш пер­вый шаг относится к первому чтению задачи. Как же зафиксиро­вать на бумаге результат второго? Если мы сумеем научить этому наших детей, то можно смело утверждать: половина проблем в ре­шении задач снята!

По моему убеждению, каждый ученик должен "понимать", то есть уметь обрабатывать текст задачи.

Итак, выделив математическое ядро, читаем ее второй раз и ставим перед со­бой очень важную задачу: выделение величин и отно­шений между ними, которые заключены, как говорят дети, "в главных словах и числах (буквах)". Это второй шаг в решении любой задачи.

Можно с ребятами договориться подчеркивать эти слова карандашом в книге и цветным мелом на доске. Вопрос задачи всегда выделяем особо - это цель наших действий. Вот что получается:

Трусливый охотник перед охотой подкрепился двумя булочка­ми, но струсил и так ослабел, что решил на охоту не идти. Под­крепившись еще тремя булочками, он осмелел, даже зарядил ру­жье, но снова струсил. Пришлось ему опять восстанавливать свои силы двумя булочками. Сколько всего булочек истратил охотник булочками на поддержку своих сил?

Текст уже не пугает; зрительно делается акцент на выделенные слова, а их стало во много раз меньше. Многие дети вздохнули с облегчением: "Задача-то - проще не бывает". Но "расслабиться" нам не дал ученик, которому математика дается труднее, чем остальным, и этот факт, как это ни парадоксально, помогает всем ос­тальным более осознанно выполнять свои действия (как в поговор­ке "Не было бы счастья, да несчастье помогло"). Его вопрос: "Ре­бята, и все-таки, как узнать в тексте главные слова?" - слегка поубавил радость от кажущейся легкости. Этот ученик задал самый главный вопрос урока, заставив отрефлексировать способ действия. И не оказалось такого ученика, его роль должны взять на себя вы и попросить детей обсудить, по како­му признаку они выделяют величины.

Первое, что предложили ученики, - это проверить, правильно ли в данной задаче они выделили слова. Ход был гениально про­стой: стереть с доски все слова, кроме выделенных. Получилось следующее:

.двумя булочками . тремя булочками . двумя булочками.

Сколько всего булочек?

Исключение части слов не повлияло на математическую мо­дель задачи, то есть мы совершенно безболезненно можем понять, а следовательно, решить данную задачу. Немного погодя у нас родился второй способ выделения величин: не подчеркивание важ­ных слов, а удаление несущественных (обратите внимание: дети сами нашли для себя более простой метод - метод исключения). Ученики подтолкнули меня к созданию нового вида заданий: каждая группа получает свой текст задачи; надо закрасить маркером все слова, оставив только важные. Соблюдается условие: текст с закрашенными словами передается по кругу другой группе, кото­рая должна будет понять и решить задачу. Критерием правильности выступает возможность восстановления математической моде­ли (не сюжетной!).

В процессе обсуждения выясняем, что выделять следует составные: числа (буквы) и наименование при них; действующие лица там, где есть сравнение; слова, указывающие на действия. Последнее указание надо тоже изучить подробно.

Хочу заметить, что процесс обработки текста важен не только в решении задач. Существует у учеников еще один любимый "штамп": "Я не понял задание". А что это значит? Казалось бы текст написан по-русски, чего же тут не понять? Проблема в том, что его нужно "перевести" с русского на математический язык и наоборот. Ребенок не выделяет для себя понятие, не видит указа­ний на совершение действий.

Итак, начав с решения простейшей задачи для первого класса, мы с вами столкнулись с более значимой проблемой - проблемой текста в математике. Каждый новый ответ в решении этой пробле­мы порождает несколько новых вопросов.

Мы прошли нелегкий путь знакомства с математическим текстом, а также важным шагом выделения величин. Познакомимся со следующими шагами:

3. Фиксирую условие схемы.

4. Пишу формулы.

5. Вычисляю, записываю ответ.

6. Возвращаюсь к тексту задачи, делаю проверку.

Причем такие важные моменты, как фиксация условия задачи схемы, запись формулы и вычисление с записью ответа, следует рассматривать в комплексе.

Для того чтобы увидеть, действительно ли ребенок уме­ет соотнести текст и схему, удобно воспользоваться обрат­ной задачей: не по тексту изобразить схему, а по схеме вос­становить текст.

На уроках контроля можно предложить проверить, правильно ли составлена схема по задаче. В этом случае можно вос­пользоваться приемом, предложенным Э.И. Александровой для установления взаимнооднозначного соответствия, - это проведение "дорожек" от слова к его изображению в схеме.

Для формирования действия контроля за результатом отлично подходят задачи, содержащие несколько вопросов или задачи, в которых идет указание на поиск нескольких величин словами "Найдите каждый…". Последний шаг – это оценка правдоподобности результата.

Действие оценки можно выделить в самостоятельные задания, которые могут звучать так: "Прочитав задачу, исключи те варианты ответов, которые противоречат сюжету", "Выбери те ва­рианты, которые могут появиться в ре­зультате".


Страница: