Педагогика в начальных классах
Рефераты >> Педагогика >> Педагогика в начальных классах

В программе по математике нет ограничений в отношении подбора задач, поэтому учи­тель может по своему усмотрению включать задачи и другой математической структуры. Вместе с тем надо учитывать основные требования программы в отношении уровня умений решать текстовые арифметические задачи учащимися, оканчивающими началь­ную школу: они должны приобрести твердые умения решать простые арифметические за­дачи на все действия, а также должны уметь решать несложные составные задачи в 2—3 действия.

При алгебраическом способе ответ на вопрос задачи находится в результате составления решения уравнения.

При решении любой задачи алгебраическим способом после анализа содержания задачи выбирается неизвестное, обозначается буквой, вводится в текст задачи, а затем на основе выделенных в содержании задачи зависимостей составляются два выражения, связанные отношением равенства, что позволяет записать соответствующее уравнение. Найденные в результате решения уравнения корни осмысливаются с точки зрения содержания задачи, а корни не соответствующие условию задачи отбрасываются. Если буквой обозначено искомое, оставшиеся корни могут сразу дать ответ на вопрос задачи. Если буквой обозначено неизвестное, не являющееся искомым, то искомое находится на основе взаимосвязей его с тем неизвестным, которое было обозначено буквой.

В начальном курсе обучения дети также знакомятся с графическим способом. Опираясь только на чертеж легко дать ответ на вопрос задачи. Иногда решение задачи графическим способом связано не только с построением отрезков, но и с измерением их длин.

При обучении решению текстовых задач необходимо достигнуть двух взаимосвязан­ных целей — обучить: 1) решению опре­деленных видов задач; 2) приемам поиска решения любой задачи. Первая из них важна потому, что дает необходимый опыт и возможность выделить в решаемой задаче те подзадачи, решение которых известно. Кроме того, при решении каждой новой задачи можно использовать те спосо­бы и приемы, которые давали прежде положительные результаты. Но на практике приходится встречаться с задачами, при поиске решения которых никакой прежний опыт не помогает и требуется догадка, «открытие». Можно ли помочь ученику прийти к такой догадке, дать ему неко­торое средство, помогающее «открытию?» При реализации идей развивающего обу­чения такая цель представляется даже более важной, так как помогает развитию таких когнитивных способностей, как умение проанализировать новую ситуацию, на основе проведенного анализа принять правиль­ное решение, выработать план действий и суметь осуществить его.

Для того чтобы решить поставленную задачу, необходимо построить ее математическую модель,а затемприменить известные методы для нахож­дения числового значения искомых величин. При этом основная трудность как раз и состоит в переходе от текста к математи­ческой модели. Для построения математи­ческой модели необходимо, прежде всего, реконструировать в воображаемом внутрен­нем плане описываемую в задаче си­туацию, затем выделить в ней существен­ные признаки и абстрагироваться от всего того, что является несущественным с точки зрения поиска ответа на поставленный вопрос. Например: «Купец купил 138 аршин черного и синего сукна за 540 р. Спрашивается, сколько аршин того и другого сукна купил купец, если синее сукно стоило 5 р. за аршин, а черное — 3 р. за аршин?» Сначала он пытается разделить 540 на 138, затем 540 на 5 и т. п.

Существенным является то, что речь идет о купце, о сукне синего и черного цвета. Поэтому задача не изменится, если ее сформули­ровать так: куплено два сорта материи по цене 3 р. и 5 р. за метр. Сколько куп­лено материи каждого сорта, если всего было куплено 138 м, а вся покупка стоила 540 р.?

Несущественным является и то, что речь идет о некоторой коммерческой опе­рации. Задачу можно было бы сформу­лировать и так:из 540 м материи сшили 138 платьев и блузок. Сколько сшили платьев и сколько блузок, если известно, что на платье расходовали по 5 м ткани, а на блузку — по 3 м?

Что же существенно? То, что в задаче рассматриваются величины, связанные пря­мой пропорциональной зависимостью: коли­чество купленной материи и ее стоимость (количество сшитых изделий и израсходо­ванная ткань); то, что известна стоимость покупки (количество затраченной ткани), це­на каждого вида материи (норма расхода на каждый вид изделия), количество всей купленной материи (вся израсходованная ткань); то, что неизвестно, сколько материи каждого вида куплено (сколько изделий каждого вида сшито).

Для поиска решения необходимо вы­явить зависимости между указанны­ми величинами. Согласно существующей методике это делается с помощью некото­рого рассуждения. Но, как показывает практика, подобное рассуждение трудно воспринимается младшими школьниками. Возникает вопрос, как провести необходи­мое для поиска решения задачи рассуж­дение наиболее доступным младшему школь­нику образом. Для этого можно предста­вить всю существенно важную информа­цию в наглядной и легко обозримой форме — в виде картинки, т. е. построить некоторую промежуточную графическую модель.

Почему предпочтение отдается графиче­ским методам? Графическая информация легче для восприятия, более емкая (лю­бой рисунок достаточно долго пришлось бы описывать словами), и, вместе с тем, может быть достаточно условной.

Требования, предъявляемые к графиче­ской модели предметной области задачи, можно сформулировать так. Она должна:

— «опредмечивать» абстрактные поня­тия;

— нести информацию лишь о существен­ных признаках задачи;

— давать возможность непосредственно усматривать зависимость между величинами, о которых идет речь в задаче;

— допускать ее практические преобразо­вания;

— строиться на основании анализа тек­ста задачи;

— не предъявлять неумеренных требований к графическим навыкам учащихся.

Рисование графической схемы, во-первых, (вставляет ученика внимательно читать текст задачи, во-вторых, позволяет перенести часть умственных действий в действия практические и закрепить результат в виде ма­териального объекта, в-третьих, дает возможность искать решение самостоятельно.

Рассмотрим задачу: «В колхозе 40 автомашин – легковых и грузовых, причем на каждую легковую машину приходится четыре грузовые. Сколько легковых и сколько грузовых машин в колхозе?» Изобразим каждую машину палочкой (40 машин – 40 палочек) известно, что на каждую легковую машину приводится 4 грузовые. Поэтому отложим одну палочку – это легковая машина. Под ней положим 4 палочки – это 4 грузовые машины. Будем поступать так до тех пор, пока все 40 палочек не окажутся разложены. Чтобы ответить на вопрос задачи, достаточно сосчитать, сколько палочек положено в верхнем ряду и сколько палочек положено в нижнем ряду. Такое решение задачи можно назвать практическим. Это еще один из способов решения текстовых задач.

Обучение детей решению задач разными способами важно. Эта работа развивает логическое мышление, интерес к уроку математики.

1.3. Особенности работы над задачами по системе Л.В. Занкова.


Страница: