Педагогика в начальных классах
Рефераты >> Педагогика >> Педагогика в начальных классах

Отдельно следует рассматривать чи­сто математическую прикидку, которая будет зависеть от модели задачи. Чаще всего она заключается в со­отнесении частей и целого, проверке ис­пользования различных величин в одном действии, а так­же в проверке используемых мер или наименований.

2. Практическая часть.

Учитель должен на практике руководствоваться теоретическими основами. Теория и практика неразрывно связана между собой и не могут существовать друг без друга. Рассмотрев и ознакомившись с теоретической основой решения задач, хотела бы полученные знания на практике. То есть рассмотреть, как лучше поставить вопрос к задаче, сделать краткую запись, как проанализировать задачу, каким способом легче решить задачу. А также рассмотреть задачи решаемые в третьем классе: задачи на увеличение (уменьшение) числа на несколько единиц, сформированные в косвенной форме; задачи на пропорциональное деление, задачи на нахождение неизвестных по двум разностям, задачи на встречное движение и в противоположных направлениях и другие.

При анализе задачи от вопроса и от числовых данных можно выделить несколько этапов, достигнуть которые можно путем решения простых задач:

1. В одной стопке были несколько тетрадей и в другой стопке были тетради. Сколько тетрадей в двух стопках?

2. На одной тарелке лежало б яблок и на другой лежало несколько яблок. Сколько яблок лежало на двух тарелках?

3. На одном кусте 4 помидора, а на дру­гом 5. Сколько всего помидоров на двух кустах?

Рассматривается первая задача. Ведется беседа:

— Условимся, что при анализе вопрос задачи будем обозначать прямоугольником со знаком вопроса. Чтобы дать ответ на вопрос задачи, что надо знать? (Сколько было тетрадей в первой стопке и сколько во второй.)

В прямоугольнике ставим знак вопроса — вопрос задачи. От этого прямоугольника проведем два отрезка и начертим два „других прямоугольника. Поскольку этих чисел в за­даче не дано, то в прямоугольниках ставим знаки вопроса (рис. 1).

Рассматривается вторая задача. Учитель чертит на доске схему (рис. 2), сопровождая беседой:

рис. 1 рис. 2

— Чтобы ответить на вопрос задачи, какие числа нам надо знать? (Сколько яблок лежало на каждой тарелке.)

— На первой тарелке лежало 5 яблок, поэтому в одном прямоугольнике пишем число 5. Сколько яблок было на второй тарелке, в задаче не сказано, поэтому во втором прямоугольнике ставим знак вопроса.

Учащиеся убеждаются в том, что и вторую задачу решить нельзя.

?

Наконец, рассматривается третья задача. Учитель чертит на доске схему (рис. 3) и ведет беседу.

— Чтобы ответить на вопрос третьей задачи, что нам надо знать? (Сколько помидоров было на первом и втором кустах.)

— Можем мы эту задачу решить? (Да, можем.)

— Что мы запишем в прямоугольниках? (В одном запишем число 4, а в другом — число 5.)

После этого учащиеся должны повторить рассуждение в связной форме: чтобы ответить на вопрос задачи, надо знать, сколько помидоров было на первом кусте и сколько помидоров было на втором кусте. Оба эти числа нам известны. Чтобы решить задачу, надо к 4 прибавить 5, получится 9. Ответ 9 помидоров.

Затем решаются задачи в два и в три действия: «Отец и сын окапывали кусты смородины. Отец в час окапывал 5 кустов, а сын 3. Сколько времени они должны работать вместе, чтобы окопать 24 куста?» После уяснения и сокращения записи условия задачи учащиеся под руковод­ством учителя разбирают ее подобно тому, как разбирали простые задачи. Затем ведется фронтальная беседа:

— Вопрос задачи обозначим знаком вопро­са, записанным в прямоугольнике (рис. 4).

рис. 4

Чтобы ответить на него, какие два числа надо знать? (Сколько кустов надо окопать (24 к.) и сколько кустов окапывали вместе за час отец и сын.)

— От прямоугольника со знаком вопроса на одну клетку ниже чертим два других прямоугольника. Что мы в них запишем? (В одном запишем число 24, а в другом поставим знак вопроса, так как неизвестно, сколько в час окапывали кустов отец и сын вместе.)

— Чтобы узнать, сколько в час окапывают кустов отец и сын вместе, что надо знать? (Сколько отдельно кустов окапывает отец — 5 к. и сын — 3 к.)

— От прямоугольника со знаком вопроса на одну клетку ниже начертим еще два прямоугольника. Что мы в них запишем? (В одном запишем число 5 — количество кустов, окапываемых в час отцом, а в другом число 3 — количество кустов, окапываемых в час сыном.)

После фронтального анализа учащиеся повторяют рассуждение в связной форме: чтобы ответить на вопрос задачи, надо знать, сколько кустов надо окопать (24 к.) и сколько кустов в час окапывают вместе отец и сын. Для этого надо знать, сколько кустов отдельно окапывает в час отец (5 к.) и сколько кустов окапывает в час сын (Зк.) В первом вопросе узнаем, сколько кустов вместе окапывают в час отец и сын, в втором — сколько времени они окапывали.

Если разбор этой задачи ведется с числовых данных, то он сопровождаете беседой:

— Если отец в час окапывает 5 кустов, а сын 3 куста, то что можно узнать? (Сколы кустов в час они окапывают вместе.)

— Зная это и то, что им надо окопа 24 куста, что можно узнать? (Сколь времени, они должны работать вместе)

Далее решаются задачи в 4 и в 5 действий:

«Птицефабрика должна отправить в магазины 6000 яиц. Она уже отправила 10 ящиков по 350 яиц и 4 ящика по 150 яиц. Сколько яиц осталось отправить в магазины?»

Записывая сокращенно условие задачи с использованием числовых выражений, ве­дем рассуждение: если было 10 ящиков по 350 яиц в каждом, то яиц было 350·10. Отпра­вила также 4 ящика по 150 яиц, это составляет (150·4) яиц.

Отправили: (350·10) яиц

(150· 4) яиц 6000 яиц

Осталось ?

Выполняя неполный анализ от вопроса, учащиеся рассуждают примерно так: «Чтобы ответить на вопрос задачи, надо знать, сколько всего яиц надо отправить (6000 яиц) и сколько яиц птице­фабрика уже отправила. Чтобы узнать, сколько яиц фабрика отправила, надо знать, сколько она отправила в первый и во второй раз. В первом вопросе узнаем, сколько птицефабрика отправила яиц в 10 ящиках, во втором — сколько она отправила яиц в 4 ящи­ках, в третьем —сколько всего яиц птице­фабрика отправила и в четвертом — сколько яиц осталось отправить. Схемы полного анализа (рис. 5) и неполного (рис. 6) нагляд­но показывают' преимущество и недостатки каждого из них.


Страница: