Законы науки
Pинд.(А/Вi)=k.
Это выражение представляет символическую запись индуктивного заключения А при наличии некоторой совокупности условий Вi. Таким образом, мы видим, что в индуктивно-статистическом объяснении используются две основные формы вероятности: статистическая и индуктивная (логическая). Если первая обеспечивает нас информацией о свойствах и закономерностях реального мира, то вторая устанавливает связь между экспланансом и экспланандумом объяснения.
При индуктивном объяснении с самого же начала возникает вопрос о том, какую степень подтверждения или логической вероятности следует признать достаточной для объяснения. Очевидно, если эта вероятность будет не больше половины, то такое объяснение вряд ли можно считать достаточно обоснованным. Равным образом мы не признаем надежным предсказание, вероятность которого не превосходит половины. Это обстоятельство существенно ограничивает класс индуктивных объяснений. Так, К. Гемпель относит к числу индуктивно-статистических объяснений только такие, степень вероятности которых приближается к 1. Иными словами, такого рода объяснения по существу приближаются к дедуктивным, так как их экспланандум вытекает из эксплананса почти с практической достоверностью (хотя теоретически практическая достоверность и отличается от достоверности дедуктивного заключения). В качестве конкретной иллюстрации Гемпель приводит пример с вытаскиванием шаров из урны, который достаточно ясно выражает его основную идею. Допустим, что мы наудачу вытаскиваем шар из урны, в которой находятся 999 белых и один черный шар. Если шары хорошо перемешаны, то вероятность извлечения белого Шара будет весьма велика (р = 0,999). Этот факт легко объяснить статистическими соображениями. Подобным же образом, по мнению Гемпеля, статистические законы, используемые при индуктивном объяснении, должны обладать такой высокой вероятностью, чтобы на их основе можно было делать надежные предсказания и объяснения. Некоторые авторы вообще отрицают правомерность индуктивного объяснения, утверждая, что в случае статистических обобщений и законов мы имеем дело не с объяснением, а с недостаточно надежными правилами недедуктивных умозаключений. Нетрудно заметить, что подобный подход к объяснению основывается на том, что единственно допустимой формой рассуждений в науке признается только дедукция, индуктивным же заключениям в лучшем случае отводится эвристическая роль. Вряд ли с таким подходом можно согласиться. Если индуктивно-статистические объяснения не признают за подлинные, полноценные объяснения, тогда следует также отказаться и от предсказаний, основанных на таких предпосылках. Но с этим не согласятся даже самые радикальные дедуктивисты.
И с теоретической и с практической точек зрения индуктивная модель объяснения играет существенную роль в науке. Часто она может значительно облегчить поиски более привычного дедуктивного объяснения, но во многих случаях сама проблема не допускает такого объяснения, и поэтому приходится обращаться к индукции и статистике.
В заключение остановимся на выяснении логической связи между дедуктивным и индуктивным объяснением. Поскольку индуктивный вывод допускает более ослабленные требования, чем дедуктивный, то целесообразно рассматривать индукцию как более общий тип рассуждения. Соответственно такому подходу мы будем выражать статистические законы в форме обобщенной, вероятностной импликации, впервые введенной Г. Рейхенбахом, а обычные универсальные законы динамического типа - в виде общей импликации математической логики.
В статистическом законе, как и любом вероятностном утверждении, можно выделить две части: в первой из них — антецеденте - формулируются условия, при осуществлении которых с той или иной вероятностью может произойти интересующее нас событие случайного массового характера, т.е. консеквент импликации. Так как при статистической интерпретации речь идет не об индивидуальных событиях, а о классе подобных событий, то в вероятностной импликации мы должны рассматривать не отдельные высказывания, а классы высказываний, которые можно выразить с помощью пропозициональных функций, или функций-высказываний. Тогда саму вероятностную импликацию символически можно представить в следующем виде:
Универсальный квантор (i) перед импликацией показывает, что она распространяется на все случаи из некоторого класса событий. Антецедент хi, А обозначает класс тех событий А, при осуществлении которых с вероятностью равной р возникает событие у из класса В:
Уi В. Так, например, если рассматривать явления, связанные с радиоактивным распадом химических элементов (события класса А), то каждому элементу будет соответствовать определенная вероятность его превращения в другие элементы в течение некоторого времени, которую обычно характеризуют как период полураспада.
Существенное отличие вероятностной импликации от обычной состоит в том, что если в последнем случае истинность антецедента всегда влечет и истинность консеквента, то в первом случае истинный антецедент обеспечивает лишь определенную вероятность консеквента. Если степень вероятности р будет равна 1, тогда вероятностная импликация превращается в обычную. Мы видим отсюда, что дедуктивное объяснение можно рассматривать как особый случай индуктивного, когда степень вероятности экспланандума становится равной 1 и, следовательно, вероятный вывод становится достоверным.
Индуктивные объяснения, степень вероятности которых приближается к так называемой практической достоверности, т.е. весьма близка к 1, хотя по своему результату сходны с дедуктивными, тем не менее составляют особый вид, и поэтому Гемпель совершенно правильно относит их именно к индуктивным. Дело в том, что, несмотря на большую степень вероятности, их заключение в принципе может оказаться и неверным, так что здесь всегда имеется элемент неопределенности. Эта неопределенность будет возрастать по мере уменьшения величины вероятности. Поэтому индуктивные объяснения, степень вероятности заключения которых не превышает половины, на практике не будут считаться подлинными объяснениями.
8.3 Научное предсказание
Предвидение новых ситуаций, событий и явлений составляет важнейшую особенность человеческого познания и целенаправленной деятельности вообще. В элементарной форме эта особенность присуща и высшим животным, поведение которых строится на основе условных рефлексов. Однако о подлинном предвидении можно говорить лишь тогда, когда оно основывается на сознательном применении тех или иных закономерностей, выявленных в процессе развития науки и общественной практики.
Научные предсказания, опирающиеся на точно сформулированные законы и теории, генетически возникают из предвидений и эмпирических прогнозов, которые задолго до возникновения науки люди делали на основе простейшего обобщения своих наблюдений над явлениями природы. Такие прогнозы не отличались большой точностью, поскольку они строились на наблюдениях тех связей явлений, которые легче всего бросались в глаза. Но уже здесь люди интуитивно сознавали закономерную связь между явлениями и их различными свойствами. Так, предсказание погоды по форме облаков, характеру заката, движению ветра, температуре воздуха и другим приметам часто приводит опытных людей к правильным выводам. Однако такой прогноз в значительной мере основывается на знании не объективных законов природы, а скорее различных внешних проявлений этих закономерностей. Даже классическая метеорология свои прогнозы строит большей частью на основе эмпирического исследования распределения давлений воздуха, формы облаков, скорости движения ветра и некоторых других факторов. Естественно поэтому, что такие прогнозы могут делаться только на сравнительно короткое время, да и то не всегда сбываются. Причина этого состоит в том, что они не опираются на глубокие внутренние закономерности и теории, управляющие процессами формирования погоды в различных регионах земного шара. Поэтому современная теоретическая метеорология стремится открыть как раз именно такие законы, с помощью которых можно было составлять долгосрочные прогнозы. Этот пример достаточно ясно показывает, что надежность, точность и временные границы предсказания самым тесным образом зависят от характера законов или обобщений, используемых в процессе предсказания.