Нормы и интерпретация результатов теста
Рефераты >> Психология >> Нормы и интерпретация результатов теста

Заметим, что в других соревнованиях расклад абсолютных дос­тижений может быть иным: занявший первое место может всего на пол-очка опережать ближайших участников. Важно, что он набрал наибольшее количество очков. Только от этого зависит его порядко­вое место.

Шкала интервалов. К ней относятся такие материалы, в которых дана количественная оценка изучаемого объекта в фиксированных еди­ницах. Вернемся к опытам, которые провел психолог с Саней. В опытах учитывалось, сколько точек может поставить, работая с максимально доступной ему скоростью, сам Саня и каждый из его сверстников. Оценочными единицами в опытах служило число точек. Подсчитав их, исследователь получил то абсолютное число точек, которое оказалось возможным поставить за отведенное время каждому участнику опытов. Главная трудность при отнесении материалов к шкале интервалов со­стоит в том, что нужно располагать такой единицей, которая была бы при всех повторных измерениях тождественной самой себе, т.е. одина­ковой и неизменной. В примере с шахматистами (шкала порядка) такой единицы вообще не существует.

В самом деле, учитывается число партий, выигранных каждым участником соревнований. Но ясно, что партии далеко не одинако­вы. Возможно, что участник соревнований, занявший четвертое ме­сто — он выиграл шесть партий, — выиграл труднейшую партию у самого лидера! Но в окончательных итогах как бы принимается, что все выигранные партии одинаковы. В действительности же этого нет. Поэтому при работе с подобными материалами уместно их оценивать в соответствии с требованиями шкалы порядка, а не шкалы интервалов. Материалы, соответствующие шкале интерва­лов, должны иметь единицу измерения.

Шкала отношений. К этой шкале относятся материалы, в ко­торых учитываются не только число фиксированных единиц, как в шкале интервалов, но и отношения полученных суммарных итогов между собой. Чтобы работать с такими отношениями, нужно иметь некую абсолютную точку, от которой и ведется отсчет. При изуче­нии психологических объектов эта шкала практически неприменима.

О параметрических и непараметрических методах стати­стики. Приступая к статистической обработке своих исследований, психолог должен решить, какие методы ему более подходят по осо­бенностям его материала — параметрические или непараметриче­ские. Различие между ними легко понять. Вспомним, что говори­лось об измерении двигательной скорости шестиклассников. Как обработать эти данные? Нужно записать все произведенные изме­рения — в данном случае это будет число точек, поставленных ка­ждым испытуемым, — затем требуется вычислить для каждого ис­пытуемого среднее арифметическое по результатам опытов. Далее следует расположить все эти данные в их последовательности, на­пример, начиная с наименьших к наибольшим. Для облегчения обо­зримости этих данных их обычно объединяют в группы; в этом слу­чае можно объединить по 5—9 измерений в группе. Вообще же при таком объединении желательно, если общее число случаев не более ста, чтобы общее число групп было порядка двенадцати. Получи­лась такая таблица (с. 249).

Далее нужно установить, сколько раз в опытах встретились чи­словые значения, соответствующие каждой группе. Сделав это, нужно для каждой группы записать ее численность. Полученные в такой таблице данные носят название распределения численностей. Рекомендуется представить это распределение в виде диаграммы — полигона распределения. Контуры этого полигона помогут решить вопрос о статистических методах обработки. Нередко они напоми­нают контуры колокола, с наивысшей точкой в центре полигона и с симметричными ветвями, отходящими в ту и другую сторону. Такой контур соответствует кривой нормального распределения. Это поня­тие было введено в математическую статистику К.Ф. Гауссом (1777—1855), поэтому кривую именуют также кривой Гаусса. Он же дал математическое описание этой кривой. Для построения кри­вой Гаусса (или кривой нормального распределения) теоретически требуется очень большое количество случаев. Практически же при­ходится довольствоваться тем фактическим материалом, который накоплен в исследовании. Если данные, которыми располагает ис­следователь, при их внимательном рассмотрении или после перено­са их на диаграмму, лишь в незначительной степени расходятся с кривой нормального распределения, то это дает право исследовате­лю применять в статистической обработке параметрические методы, исходные положения которых основываются на нормальной (О математически обоснованных способах определения того, можно ли считать данное распределение нормальным, см., например, в кн.: Урбах В.Ю. Математиче­ская статистика для биологов и медиков. М., 1963. С. 66) кривой распределения Гаусса. Нормальное распределение называют пара­метрическим потому, что для построения и анализа кривой Гаусса достаточно иметь всего два параметра: среднее арифметическое, значение которого должно соответствовать высоте перпендикуляра, восстановленного в центре кривой, и так называемое среднее квад-ратическое, или стандартное, отклонение — величины, характери­зующей размах колебаний данной кривой; о способах вычисления той и другой величины будет далее рассказано.

Параметрические методы обладают для исследователя многими преимуществами, но нельзя забывать о том, что применение их правомерно только тогда, когда обрабатываемые данные показывают распределение, лишь несущественно отличающееся от гауссова.

При невозможности применить параметрические методы, надлежит обратиться к непараметрическим. Эти методы успешно разрабаты­вались в последние 3—4 десятилетия, и их разработка была вызва­на прежде всего потребностями ряда наук; в частности, психологии. Они показали свою высокую эффективность. Вместе с тем они не требуют сложной вычислительной работы.

Современному психологу-исследователю нужно исходить из того, что «существует большое количество данных либо вообще не под­дающихся анализу с помощью кривой нормального распределения, либо не удовлетворяющих основным предпосылкам, необходимым для ее использования» (Рунион Р. Справочник по непараметриче­ской статистике. М., 1982. С. 11.).

Генеральная совокупность и выборка. Психологу постоянно придется иметь дело с этими двумя понятиями. Генеральная сово­купность, или просто совокупность, — это множество, все элемен­ты которого обладают какими-то общими признаками. Так, все под­ростки-шестиклассники 12 лет (от 11,5 до 12,5) образуют совокуп­ность. Дети того же возраста, но не обучающиеся в школе, или же обучающиеся, но не в шестых классах, не подлежат включению в эту совокупность.

В ходе конкретизации проблем своего исследования психологу неизбежно придется обозначить границы изучаемой им совокупно­сти. Следует ли включать в изучаемую совокупность детей того же возраста, но обучающихся в колледжах, гимназиях, лицеях и других подобных учебных заведениях? В ответе на этот и на другие такие же вопросы может помочь статистика.

В подавляющем большинстве случаев исследователь не в состоя­нии охватить в изучении всю совокупность. Приходится, хотя это и связано с некоторой утратой информации, взять для изучения лишь часть совокупности, ее и называют выборкой. Задача исследователя заключается в том, чтобы подобрать такую выборку, которая репре­зентировала бы, представляла совокупность; другими словами, при­знаки элементов совокупности должны быть представлены в выбор­ке. Составить такую выборку, в точности повторяющую все разно­образные сочетания признаков, которые имеются в элементах сово­купности, вряд ли возможно. Поэтому некоторые потери в инфор­мации оказываются неизбежными. Важно, чтобы в выборке были сохранены существенные, с точки зрения данного исследования, признаки совокупности. Возможны случаи, и для их обнаружения есть статистические методы, когда задачи исследования требуют создания двух выборок одной совокупности; при этом нужно уста­новить, не взяты ли выборки из разных совокупностей. Эти и дру­гие подобные казусы нужно иметь в виду психологу при обработке результатов выборочных исследований.


Страница: