Нормы и интерпретация результатов теста
Рефераты >> Психология >> Нормы и интерпретация результатов теста

Заменив буквенные обозначения числами, получим:

Для получения коэффициента х2 нужно воспользоваться форму­лой х2 = j2 · n. В данном примере х2 = 0,342 · 187 = 0,1156 · 187 = = 21,7. Этот же коэффициент х2 вычислялся другим приемом. По­лучено значение 21,9. Расхождение вызвано разницей в технике вычислений.

Коэффициент четырехпольной корреляции j может принимать значения от 0 до 1, причем знак получаемого j не принимается во внимание.

Психологу, намеренному воспользоваться для статистического анализа своих материалов методом хи-квадрат, нужно знать о неко­торых обязательных требованиях этого метода; о них не упомина­лось в приведенных примерах. При вычислении коэффициента х2 необходимо брать для анализа только абсолютные численности вы­борок, но не относительные, в частности, не проценты. Необходи­мость учитывать это свойство объясняется тем, что значение коэф­фициента х2 зависит от абсолютных величин рассматриваемых рас­пределений. Так, сравнение выборок с численностями 60 и 40 даст совершенно не тот результат, что сравнение выборок с численно­стями 6 и 4, хотя процентное отношение распределений в обоих случаях одинаково (60 и 40%).

Далее, для вычисления коэффициента х2 нужно, чтобы в каждой клетке таблицы-графика было не менее пяти наблюдений. Наконец, нужно со вниманием относиться к определению числа степеней свободы; неверное определение этого числа повлечет за собой не­верное определение уровня значимости коэффициента по таблице.

Этим заканчивается рассмотрение статистических методов, отно­сящихся ко второму типу задач.

В этих задачах независимо от того, будут ли они практического или теоретического содержания, психолог сопоставляет, сравнивает между собой несколько выборок. При этом не следует забывать, что цель исследования не всегда состоит в том, чтобы при сопоставле­нии отвергнуть нуль-гипотезу. Иногда конечная или промежуточная цель исследования состоит в том, чтобы, допустим, сравнивая вы­борки, подтвердить нуль-гипотезу. Самый простой пример: исследо­ватель желает составить большую выборку, для чего необходимо объединить в ней учащихся нескольких школ. Естественно, решаю­щее значение имеет доказательство того, что группы учащихся из разных школ относятся к одной совокупности, нужно, чтобы при­мененные критерии подтвердили это, а значит, статистика должна подтвердить при сравнении групп нуль-гипотезу. Подтвердить или отвергнуть нуль-гипотезу при сопоставлении выборок — в этом и состоит назначение статистических критериев; наиболее простые из них были изложены в предшествующем тексте. Конечно, информа­ция, которую выявят статистические методы, может быть противоречи­ва утверждениям, которые намерен защищать исследователь. В таком случае ему придется внести поправки в свои утверждения или отка­заться от них.

Переходим к задачам третьего типа — задачам, рассмат­ривающим динамические, временные ряды.

Подпись: Недели эксперимента
Рис. 4
Предположим, что психологу дано задание собрать информацию о состоянии умственной работоспособности школьников 8-х классов, начиная со второй недели учебного года и до девятой недели вклю­чительно. Одной из методик, с помощью которых можно фиксиро­вать состояние умственной работоспособности, считается тест Кре­пелина. Он состоит из большого количества примеров, в каждом из них нужно складывать два двузначных числа; учитывается общее число правильно решенных примеров. Каждые 3 минуты испытуе­мые по сигналу экспериментатора отмечают черточкой сделанное. Общая длительность эксперимента в зависимости от возраста со­ставит 9, 12 или 15 минут. Этой методикой и воспользовался пси­холог. Он начал с того, что сформировал из учащихся, средние ус­пехи которых оценивались за предыдущее полугодие баллами 4 и 5, выборку из 10 человек. Все они изъявили желание участвовать в эксперименте. С этими учащимися психолог в течение первой недели учебного года провел по 12 тренировочных занятий; это было необходимо, иначе рост продуктивности вследствие упражняемости замаскировал бы изменения в динамике работоспо­собности. Затем начался эксперимент: по субботам после уроков учащиеся этой выборки в течение 12 минут работали с тестом Крепелина. Эксперимент, как было сказано, продолжался 8 не­дель. Были получены следующие данные, средние по всей выбор­ке (рис. 4).

Визуальная оценка полученного динамического ряда свидетельст­вует о снижении умственной работоспособности, в чем, конечно, нет ничего удивительного. Однако снижение идет не вполне равно­мерно. Это ясно видно из графика.

Недели экспери­мента

I

II

III

IV

V

VI

VII

VIII

Средняя продук­тивность по тесту Крепелина

92

94

90

92

81

74

78

70

Основная тенденция измене­ния умственной работоспособ­ности вполне ясна. Наблюдае­мые, в общем, незначительные отклонения от этой тенденции могут быть на графике устра­нены методом сглаживания. В этом случае применим метод скользящей средней. Для сгла­живания суммируются три по­казателя у — в данном приме­ре это показатели продуктив­ности по тесту, — далее, опус­кая по одному показателю, суммируются одна за другой триады. Средняя каждой триа­ды принимается за показатель сглаженной ломанной, если ори­ентироваться по графику. Смысл проводимого действия состоит в том, что основная тенденция выступает более отчетливо.

 

92

92

88

82

77

74

— средние по триадам

92

94

90

92

81

74

78

70

В только что рассмотренном примере сглаживание имеет такой вид:

Результаты сглаживания приобретают большую наглядность при нанесении их на график. Выступает основная тенденция динамики умственной работоспособности. Судя по показателям, полученным после сглаживания, в течение первых трех экспериментальных не­дель значительного снижения работоспособности не наблюдается, а далее идет непрерывное и резкое ее снижение. Сглаживание, как видно на графике, устранило колебания в работоспособности, отме­ченные на первичном графике после V недели. При сглаживании по триадам общее число точек уменьшается на 2.


Страница: