Нормы и интерпретация результатов тестаРефераты >> Психология >> Нормы и интерпретация результатов теста
Заменив буквенные обозначения числами, получим:
Для получения коэффициента х2 нужно воспользоваться формулой х2 = j2 · n. В данном примере х2 = 0,342 · 187 = 0,1156 · 187 = = 21,7. Этот же коэффициент х2 вычислялся другим приемом. Получено значение 21,9. Расхождение вызвано разницей в технике вычислений.
Коэффициент четырехпольной корреляции j может принимать значения от 0 до 1, причем знак получаемого j не принимается во внимание.
Психологу, намеренному воспользоваться для статистического анализа своих материалов методом хи-квадрат, нужно знать о некоторых обязательных требованиях этого метода; о них не упоминалось в приведенных примерах. При вычислении коэффициента х2 необходимо брать для анализа только абсолютные численности выборок, но не относительные, в частности, не проценты. Необходимость учитывать это свойство объясняется тем, что значение коэффициента х2 зависит от абсолютных величин рассматриваемых распределений. Так, сравнение выборок с численностями 60 и 40 даст совершенно не тот результат, что сравнение выборок с численностями 6 и 4, хотя процентное отношение распределений в обоих случаях одинаково (60 и 40%).
Далее, для вычисления коэффициента х2 нужно, чтобы в каждой клетке таблицы-графика было не менее пяти наблюдений. Наконец, нужно со вниманием относиться к определению числа степеней свободы; неверное определение этого числа повлечет за собой неверное определение уровня значимости коэффициента по таблице.
Этим заканчивается рассмотрение статистических методов, относящихся ко второму типу задач.
В этих задачах независимо от того, будут ли они практического или теоретического содержания, психолог сопоставляет, сравнивает между собой несколько выборок. При этом не следует забывать, что цель исследования не всегда состоит в том, чтобы при сопоставлении отвергнуть нуль-гипотезу. Иногда конечная или промежуточная цель исследования состоит в том, чтобы, допустим, сравнивая выборки, подтвердить нуль-гипотезу. Самый простой пример: исследователь желает составить большую выборку, для чего необходимо объединить в ней учащихся нескольких школ. Естественно, решающее значение имеет доказательство того, что группы учащихся из разных школ относятся к одной совокупности, нужно, чтобы примененные критерии подтвердили это, а значит, статистика должна подтвердить при сравнении групп нуль-гипотезу. Подтвердить или отвергнуть нуль-гипотезу при сопоставлении выборок — в этом и состоит назначение статистических критериев; наиболее простые из них были изложены в предшествующем тексте. Конечно, информация, которую выявят статистические методы, может быть противоречива утверждениям, которые намерен защищать исследователь. В таком случае ему придется внести поправки в свои утверждения или отказаться от них.
Переходим к задачам третьего типа — задачам, рассматривающим динамические, временные ряды.
Предположим, что психологу дано задание собрать информацию о состоянии умственной работоспособности школьников 8-х классов, начиная со второй недели учебного года и до девятой недели включительно. Одной из методик, с помощью которых можно фиксировать состояние умственной работоспособности, считается тест Крепелина. Он состоит из большого количества примеров, в каждом из них нужно складывать два двузначных числа; учитывается общее число правильно решенных примеров. Каждые 3 минуты испытуемые по сигналу экспериментатора отмечают черточкой сделанное. Общая длительность эксперимента в зависимости от возраста составит 9, 12 или 15 минут. Этой методикой и воспользовался психолог. Он начал с того, что сформировал из учащихся, средние успехи которых оценивались за предыдущее полугодие баллами 4 и 5, выборку из 10 человек. Все они изъявили желание участвовать в эксперименте. С этими учащимися психолог в течение первой недели учебного года провел по 12 тренировочных занятий; это было необходимо, иначе рост продуктивности вследствие упражняемости замаскировал бы изменения в динамике работоспособности. Затем начался эксперимент: по субботам после уроков учащиеся этой выборки в течение 12 минут работали с тестом Крепелина. Эксперимент, как было сказано, продолжался 8 недель. Были получены следующие данные, средние по всей выборке (рис. 4).
Визуальная оценка полученного динамического ряда свидетельствует о снижении умственной работоспособности, в чем, конечно, нет ничего удивительного. Однако снижение идет не вполне равномерно. Это ясно видно из графика.
Недели эксперимента |
I |
II |
III |
IV |
V |
VI |
VII |
VIII |
Средняя продуктивность по тесту Крепелина |
92 |
94 |
90 |
92 |
81 |
74 |
78 |
70 |
Основная тенденция изменения умственной работоспособности вполне ясна. Наблюдаемые, в общем, незначительные отклонения от этой тенденции могут быть на графике устранены методом сглаживания. В этом случае применим метод скользящей средней. Для сглаживания суммируются три показателя у — в данном примере это показатели продуктивности по тесту, — далее, опуская по одному показателю, суммируются одна за другой триады. Средняя каждой триады принимается за показатель сглаженной ломанной, если ориентироваться по графику. Смысл проводимого действия состоит в том, что основная тенденция выступает более отчетливо.
92 |
92 |
88 |
82 |
77 |
74 |
— средние по триадам | |
92 |
94 |
90 |
92 |
81 |
74 |
78 |
70 |
В только что рассмотренном примере сглаживание имеет такой вид:
Результаты сглаживания приобретают большую наглядность при нанесении их на график. Выступает основная тенденция динамики умственной работоспособности. Судя по показателям, полученным после сглаживания, в течение первых трех экспериментальных недель значительного снижения работоспособности не наблюдается, а далее идет непрерывное и резкое ее снижение. Сглаживание, как видно на графике, устранило колебания в работоспособности, отмеченные на первичном графике после V недели. При сглаживании по триадам общее число точек уменьшается на 2.