Нормы и интерпретация результатов теста
Рефераты >> Психология >> Нормы и интерпретация результатов теста

Какое значение имеет выделение посредством сглаживания ос­новной тенденции? Если условия, благодаря которым возникла ос­новная тенденция, сохранятся, то и эта тенденция с высокой веро­ятностью сохранится и, таким образом, по основной тенденции мо­жет быть построен прогноз, как будут развиваться изучаемые явле­ния. Но такой прогноз возможен только при стабильности опреде­ленных условий. Для его построения нужен не только формальный, но и содержательный анализ; он же позволяет раскрыть значение факторов, вызвавших отклонения в ту или другую сторону от ос­новной тенденции.

е Техника метода скользящей средней дает возможность выбирать различные способы объединения показателей для сглаживания. Та­ковыми могут быть не только триады, но при достаточно большом числе показателей (порядка 30—40 и более) для выведения сколь­зящей средней могут быть выбраны пентады (объединения пяти по­казателей) и даже септиды (семь показателей).

Нужно иметь в виду, что наглядный и простой метод скользящей средней малопригоден для сглаживания динамики процессов, развитие которых во времени не имеет линейной формы (см.: рис. 3, схема 5, с. 265). Сглаживание методом скользящей средней в таких случаях мо­жет привести к искажению действительной тенденции развивающегося процесса. Исследователю следует внимательно всмотреться в материал, подлежащий сглаживанию, чтобы решить, имеет ли он право восполь­зоваться этим методом. Если криволинейная зависимость отражена в достаточно больших отрезках кривой, то каждый из этих отрезков в отдельности может быть подвергнут сглаживанию. Таково ограничение в использовании метода скользящей средней.

Анализируя выраженную на графике основную тенденцию в ее приближении к прямой, можно заметить, что метод не дает меры наклона, угла, который образуется между полученной после сгла­живания приближающейся к прямой ломаной и осью абсцисс. Ме­жду тем, узнав величину этого угла, исследователь получит инфор­мацию о том, с какой скоростью изменяются изучаемые явления во времени: чем круче наклон и соответственно чем меньше внешний угол сглаженной кривой с осью абсцисс, тем больший путь проходит за единицу времени изменяющийся процесс. Это хорошо видно на рис. 5.

Относительно медленное движение

Относительно быстрое движение

Единица времени

Рис.5

Точные сведения о мере наклона отрезка прямой, полученного после сглаживания, да­ет метод наименьших квадратов.

Для получения пара­метров отрезка прямой нужно обратиться к от­ношению единиц време­ни (х) и показателей раз­вивающего процесса (у).

Для нахождения па­раметров отрезка прямой, который после сглаживания представит основную тенденцию изменяющегося ряда, проделываются вычисле­ния по определенным формулам.

Формула прямой: у = а + bх, где у означает показатели ряда, х — единицы времени, по которым прослеживаются изменения изучае­мого ряда. Надлежит узнать величины а и b. Величина а необходи­ма для установления точки, с которой берет свое начало отрезок прямой, b — необходимо для установления степени наклона отрезка прямой по отношению к оси абсцисс (оси иксов).

Для вычисления вышеуказанных параметров а и b имеется сис­тема двух уравнений с двумя неизвестными:

па + åxb = åу;

åxa + åx2b = åху;

х и у в этой формуле рассчитываются из фактических данных изу­чаемого ряда.

Порядок вычислений. Шестиклассники Саня и Толя в течение пяти дней упражнялись в бросках мяча в корзину. Показатели Сани приведены в таблице (х — единица времени, у число попаданий мячом в корзину. В таблице приведены вычисления и других, тре­буемых формулой, величин; п = 5).

х

у

х2

ху

1

3

1

3

2

4

4

8

3

6

9

18

4

5

16

20

5

8

25

40

åx = 15; åу = 26; åx2 = 55; åху = 89 5a + 15b = 26;

15a + 55b = 89.

Нахождение неизвестных а и b производится обычным способом исключения одного неизвестного. Члены первого уравнения для этого умножаются на 3

15a + 45b = 78.

Из второго уравнения вычитается первое, вычисляем b:

10b = 11; b = 1,1.

Подставив числовое значение b в первое уравнение, можно полу­чить числовое значение а:

5a + 16,5 = 26;

5a = 9,5; a = 1,9.

Поскольку известны оба параметра отрезка прямой, можно опре­делить все значения параметров по пяти точкам, по формуле у = 1,9 + 1,1х.

y1 = 1,9 + 1,1 =3,0;

y2 = 1,9 + 2,2=4,1;

y3 = 1,9 + 3,3=5,2;

y4 = 1.9 + 4,4 = 6,3;

y5 =1,9 + 5,5=7,4.

Как было сказано ранее, сверстник Сани Толя упражнялся в том же умении. Так же, как и у Сани, количество дней упражнения бы­ло равно 5. Ниже приводятся результаты Толи и показаны все дру­гие величины, которые необходимы для вычисления величин, тре­буемых формулой.

х

у

х2

ху

1

3

1

3

2

6

4

12

3

5

9

15

4

8

16

32

5

10

25

50


Страница: