Нормы и интерпретация результатов теста
Рефераты >> Психология >> Нормы и интерпретация результатов теста

Число степеней свободы fd = п - 2 = 15 - 2 = 13. По таблице уровней значимости находим, что при 13 степенях свободы r0,999 = = 0,760. Сравниваем это значение с полученным коэффициентом:

0,76 < 0,96.

Полученный коэффициент корреляции показывает, что между ре­зультатами в тестах «Аналогии» и «Классификации» имеется связь. Высокий уровень значимости свидетельствует о том, что эта связь с высокой вероятностью будет воспроизводиться в таких же экспери­ментах.

Вычисление коэффициента корреляции по Спирмену (коэффициент ранговой корреляции).

Исследовательское задание указано на с. 266. Формула ранговой корреляции такова:

где d — разность рангов ряда х и ряда у т.е. (Rx- Ry).

Таблица 6

Испыту­емые

х

Rx

y

Ry

dRxRy

R2 dRxR y

А

1

1

3

1

0

0

Б

2

2

4

2

0

0

В

3

3,5

5

3

0,5

0,25

Г

3

3,5

6

4,5

1

1

Д

4

6

6

4,5

1,5

2,25

Е

4

6

7

6,5

0,5

0,25

Ж

4

6

7

6,5

0,5

0,25

3

5

8,5

8

9,5

1

1

И

5

8,5

8

9,5

1

1

К

6

10,5

8

9,5

1

1

Л

6

10,5

8

9,5

1

1

М

7

12

9

12,5

0,5

0,25

Н

8

13

9

12,5

0,5

0,25

О

9

14

10

14

0

0

П

10

15

11

15

0

0

n = 15

n2 = 225

       

Σd2RxRy = 8,5

fd = п - 2 = 15 - 2 = 13.

Производится раздельное ранжирование ряда х и ряда у. Вычис­ляется разность рангов d попарно. Знак разности не существенен, так как по формуле нужно возвести d в квадрат. Далее действия определяются формулой:

По таблице уровней значимости r > r0,99 (0,98 > 0,70).

Коэффициенты, вычисленные двумя разными способами, как и нужно было ожидать, чрезвычайно близки друг к другу; отличаются они на 0,02, что никакого значения практически не имеет.

Нельзя трактовать коэффициент корреляции как величину, озна­чающую процент взаимозависимых связей вариант двух коррели­руемых рядов, т.е. например, коэффициент 0,50 трактовать как 50% таких связей этих рядов. Это далеко не так. Об этом проценте во­обще по коэффициенту корреляции судить нельзя. Возведенный в квадрат коэффициент корреляции называется коэффициентом детерми­нации (r2 или r2). Он показывает, сколько процентов вариант обоих рядов оказались взаимозависимыми. При коэффициенте 0,50 процент таких взаимозависимых вариант составит 0,502, т.е. 0,25 (Heinz A., Ebner С. Grundlagen der Statistik fiir Psychologen, Padagogen und Soziologen. Berlin, 1967. S. 112). Для коэффициента 0,98 коэффици­ент детерминации составит 0,982 = 0,9604. Следовательно, взаимо­зависимы примерно 96% вариант обоих рядов.

Корреляция как метод статистического анализа в психологиче­ских исследованиях применяется очень часто. Всем, кто работает с применением корреляционного анализа, т.е. выясняет посредством этого метода тесноту связи двух рядов, следует напомнить, что ко­эффициент, как бы высок он ни был, нельзя интерпретировать как показатель наличия причинной связи между коррелируемыми ряда­ми. Если коэффициент и может быть как-то использован в обсуж­дении вопроса о возможных причинных связях, то только в том случае, когда содержательная логика исследования и выдвигаемые при этом теоретические соображения позволяют опереться как на один из аргументов и на значение коэффициента корреляции.

В изложении метода корреляции речь шла исключительно о ли­нейных корреляциях, которые изображены на схемах №1,2, 4. Но там же приведена схема криволинейной корреляции (№ 5). Вообще говоря, вероятно, и в психике человека протекают процессы, взаи­мосвязь которых не имеет линейного вида. Вычисление нелинейных корреляций и, главное их истолкование не относятся к простейшим статистическим методам, о которых говорится в этой главе. Но об их существовании следует знать.

Наконец, полезно напомнить, что корреляции по Пирсону (с оп­ределенными ограничениями и в определенных сочетаниях) создают ту базу, на которой открываются возможности перехода к так назы­ваемому факторному анализу. (Наиболее ясное изложение сути факторного анализа см.: Теплов Б.М. Типологические особенности в н.д. человека. М., 1967. Т. 5. С. 239).


Страница: