Нормы и интерпретация результатов теста
Рефераты >> Психология >> Нормы и интерпретация результатов теста

Подсчитаем сумму рангов по каждой школе.

åR = 258 + 284,5 + 156,5 + 121 = 820.

Проверочная формула: åR = N/2(N+1) = 820, где N — общее число элементов, включающее все выборки. В этом примере оно равно 40.

 

Школа I

åR = 258

Школа II

åR = 284,5

Школа III

åR = 156,5

Школа IV

åR = 121

Шк. I

åR = 258

 

26,5

101,5

137

Шк. II

åR = 284,5

26,5

 

156,5

163,5

Шк. III

åR = 156,5

101,5

156,5

 

35,5

Шк. IV

åR = 121

137

163,5

35,5

 

Далее суммы рангов по выборкам размещаются в матрице.

На пересечении строк и столбцов указываются разности, показы­вающие, насколько отличается сумма рангов каждой выборки от других выборок.

По таблице значимости устанавливается, что при n = 10 (учиты­вается объем отдельной выборки) и при четырех условиях достига­ют уровня значимости 0,95 — величина 134 и более, а уровня зна­чимости 0,99 — величина 163 и более. Следовательно, существен­ное статистически значимое различие имеется между 1-й и 4-й вы­борками и между 2-й и 4-й выборками; в последнем случае на уров­не значимости 0,99.

Корреляции. В примере, рассмотренном выше (С. 260), сравни­вались два ряда чисел, представляющие два ряда показателей одной и той же выборки; по смыслу задачи нужно было установить, суще­ственная ли разница между этими рядами. Это были ряды, взятые из ситуации «до» и «после». Есть, однако, и многочисленные ситуа­ции, когда исследователь заинтересован не в том, чтобы найти сте­пень существенности разницы между вариационными рядами, а в том, чтобы найти, насколько тесно эти ряды связаны между собой, какова направленность этой связи. Так, группе школьников были предложены два теста, задания которых были построены на мате­риале школьных дисциплин гуманитарного цикла — литературы и истории. Но в первом тесте для выполнения заданий требовалась актуализация умственного действия аналогии, а во втором — умст­венного действия классификации. Данные тестирования представ­лены в двух числовых рядах. Исследователю нужно ответить на во­прос, насколько тесно связаны эти два ряда. При строгой постанов­ке эксперимента это исследование должно было пролить свет на то, какую роль играют умственные действия, указанные выше, на ус­воение знаний в гуманитарном цикле.

Пример. Исследовалась выборка из 15 школьников. Для вычисления коэффициента корреляции, отражающего тесноту связи между двумя рядами, используются как параметрические, так и непараметрические методы.

До перехода к расчетам полезно рассмотреть любые корре­лируемые ряды в их размещении в корреляционной решетке. По оси абсцисс размещаются показатели одного, а по оси ординат — дру­гого ряда.

Теснота связи между рядами благодаря этой решетке становится легко обозримой. На рис. 3 схематически изображены различные виды соотношения коррелируемых рядов. Как видно, схемы отра­жают всего пять различных соотношений.

1. Положи­тельная связь

2. Слабая по­ложительная связь  

3. Отсутствие связи  

4. Отрицатель­ная связь  

5. Нели­нейная за­висимость  

Рис. 3

На схемах можно усмотреть как тесноту связи, так и ее направлен­ность. Схема 3 демонстрирует полное отсутствие связи между рядами; на схеме 5 показана нелинейная связь между рядами, та ее форма, ко­торая показана на этой схеме лишь одна из возможных.

Коэффициент корреляции принимает значение от -1 (схема 4) до +1 (схема 1). В этих пределах возможны все числовые значения коэф­фициента корреляции. Если никакой связи между рядами не суще­ствует, то коэффициент равен 0 (схема 3). В подавляющем боль­шинстве случаев коэффициент составляет величину, не достигаю­щую 1. При положительной корреляции при увеличении числовых значений одного ряда соответственно увеличиваются числовые зна­чения другого ряда. При отрицательной корреляции увеличению чи­словых значений одного ряда соответствует уменьшение числовых значений другого ряда.

Если исследователь убежден в том, что оба коррелируемых ряда можно рассматривать как ряды параметрические, то для вычисле­ния коэффициента корреляции применяется параметрический метод по формуле Пирсона:

Существует много различных видов этой формулы, представляю­щих собой ее преобразования. Исследователь сам выбирает удоб­ную для себя формулу. Об уровне значимости коэффициента корре­ляции судят по табл. 5, причем для г число степеней свободы fd = п - 2, где п — объем выборки.

Вычисление коэффициента корреляции по Пирсону. Ко­эффициент показывает тесноту связи между выполнением задач в тестах «Аналогии» и «Классификации». Данные по тесту «Аналогии» обозначены х, а по тесту «Классификации» — у.

Для упрощения расчетов введены некоторые тождества.

Испытуемые

х

y

х2

y2

ху

А

1

3

1

9

3

Б

2

4

4

16

8

В

3

5

9

25

15

Г

3

6

9

36

18

Д

4

6

16

36

24

Е

4

7

16

49

28

Ж

4

7

16

49

28

3

5

8

25

64

40

И

5

8

25

64

40

К

6

8

36

64

48

Л

6

8

36

64

48

М

7

9

49

81

63

Н

8

9

64

81

72

О

9

10

81

100

90

П

10

11

100

121

110

n = 15

77

109

487

859

635


Страница: