Методика обучения решению текстовых задач алгебраическим способом
Рефераты >> Педагогика >> Методика обучения решению текстовых задач алгебраическим способом

1) собственная скорость катера v км/ч;

2) скорость течения реки a км/ч;

3) катер проплыл 20 км по течению реки;

4) он же проплыл 20 км против течения реки;

5) на весь путь туда и обратно по реке катер затратил ч;

6) в стоячей воде катер проплыл 40 км;

7) на этот путь он затратил ч;

Требование задачи: сравнить и ч, и установить, равны ли они или нет, а если нет, то, что больше.

Следующий пример приведем для того, чтобы рассмотреть схематическую запись задачи, которая является очень важным этапом в решение задач, во-первых она наиболее краткая из-зи использования в ней различных обозначений, символов, чертежей и др., во-вторых в ней наиболее четко выделены все условия и требования, и в-третьих в схематической записи фиксируется только то, что требуется для решения, все остальное отбрасывается.

Задача.

С одного участка 1440 ц. пшеницы, а с другого, площадь которого на 12 га меньше, - 1080 ц. Найти площадь первого участка, если известно, что на первом участке собирали пшеницы с каждого гектара на 2 ц больше, чем на втором.

Анализ задачи показывает, что в ней рассматривается сбор урожая пшеницы с двух участков, при этом этот сбор характеризуется тремя величинами: массой собранной пшеницы, площадью участка и урожаем с одного гектара. Исходя из этого, составим таблицу для схематической записи условий и требований задачи. Неизвестные величины, встречающиеся в задаче, запишем в таблице буквами, притом искомое обозначим буквой :

участки

Масса собранной пшеницы, ц

Урожай с 1 га, ц

Площадь участка , га

первый

1440

а+2

х

второй

1080

а

х-12

В этой схематической записи выделены все условия, их объекты и характеристики. Указано и требование задачи: найти площадь первого участка. В то же время эта запись очень компактная, наглядная и полностью заменяет саму формулировку задачи.

Задачи, которые были приведены выше – практические задачи, т.е. задачи в которых объектами являются реальные предметы, их еще называют житейские, текстовые, сюжетные. Приведем пример еще одной такой задачи.

Задача.

Телефонная проволока длиной 15 м протянута от столба, где она прикреплена на высоте 8 м от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найти расстояние между домом и столбом, если проволока не провисает

Объектами этой задачи являются вполне реальные предметы: проволока, столб, дом. Поэтому это практическая задача. Чтобы ее решить с помощью математики, надо построить соответствующую ей математическую задачу, которая получается путем отвлечения от конкретных особенностей реальных предметов и заменой их математическими объектами. В данном случае проволоку, столб и дом (точнее стену дома) можно рассматривать как отрезки. Считая, что поверхность земли есть прямая, а отрезки, изображающие столб и дом, перпендикулярны к этой прямой, получаем такую математическую задачу.

Отрезки длиной 8 м и 20 м перпендикулярны к прямой, соединяющей их концы, и расположены по одну сторону от этой прямой. Отрезок, соединяющий другие концы этих отрезков, имеет длину 15 м. Найти расстояние между отрезками.

Мы рассмотрели составные части задачи, то, как надо производить анализ задач. Теперь рассмотрим сущность решения задачи, структуру процесса ее решения. Но сначала, ответим на вопрос, что значит решить математическую задачу. Решить математическую задачу, это значит найти такую последовательность общих положений математики (определений, аксиом, теорем, правил, законов, формул), применяя которые к условиям задачи или к их следствиям (промежуточным результатам решения), получаем то, что требуется в задаче.

§2. Этапы процесса решения задачи

Если под процессом решения задач понимать процесс, начинающийся с момента получения задачи до момента полного завершения ее решения, то очевидно, что этот процесс состоит не только из изложений уже найденного решения, а из ряда этапов, одним из которых и является изложение решения.

Из каких же этапов состоит процесс решения задачи?

Очевидно, получив задачу, первое, что нужно сделать, это разобраться в том, что это за задача, каковы ее условия, в чем состоят ее требования, т.е. провести анализ задачи. Этот анализ и составляет первый этап процесса решения задачи.

В ряде случаев этот анализ надо как-то оформить, записать. Для этого используются разного рода схематические записи задач, построение которых составляет второй этап процесса решения.

Анализ задачи и построение ее схематической записи необходимы главным образом для того, чтобы найти способ решения данной задачи. Поиск этого способа составляет третий этап процесса решения.

Когда способ решения задачи найден, его нужно осуществить, - это будет четвертый этап процесса решения – этап осуществления (изложения) решения.

После того как решение осуществлено и изложено (письменно или устно), необходимо убедиться, что это решение правильное, что оно удовлетворяет всем требованиям задачи. Для этого производят проверку решения, что составляет пятый этап процесса решения.

При решении многих задач, кроме проверки, необходимо еще произвести исследование задачи, а именно установить, при каких условиях задача имеет решение и притом, сколько различных решений в каждом отдельном случае; при каких условиях задача вообще не имеет решения и т.д. Все это составляет шестой этап процесса решения.

Убедившись в правильности решения и, если нужно, произведя исследование задачи, необходимо четко сформулировать ответ задачи, - это будет седьмой этап процесса решения.

Наконец, в учебных и познавательных целях полезно также произвести анализ выполненного решения, в частности установить, нет ли другого, более рационального способа решения, нельзя ли задачу обобщить, какие выводы можно сделать из этого решения и т.д. Все это составляет последний, конечно не обязательный, восьмой этап решения.

Итак, весь процесс решения задачи можно разделить на восемь этапов:

1 этап – анализ задачи;

2 этап – схематическая запись задачи;

3 этап – поиск способа решения задачи;

4 этап – осуществление решения задачи;

5 этап – проверка решения задачи;


Страница: