Методика обучения решению текстовых задач алгебраическим способом
Рефераты >> Педагогика >> Методика обучения решению текстовых задач алгебраическим способом

Г.А Балл отмечает, что в психологической литературе наиболее распространено употребление термина «задача» для обозначения объектов второй категории. Для объектов первой категории, Указывает Г.А. Балл, вполне подходит выражение «цель действия», «требование задачи», а для объектов третьей категории – «формулировка задачи».

Сторонники трактовки задачи как ситуации, в которой должен действовать субъект, явно включают субъекта в само понятие задачи. В методике обучения математике подобное толкование задачи особенно характерно для работ Ю.М. Колягина [11]. Без субъекта, отмечает он, нет задачи. То, что для одних является задачей, для других может ею не быть.

Сторонниками другой трактовки задачи субъект не включается в понятие задачи. Наиболее четко и последовательно эта точка зрения реализуется в работах Л.М. Фридмана, который определяет задачу как модель проблемной ситуации, выраженную с помощью знаков некоторого естественного или искусственного языка [21,24]. Проблемная ситуация, отмечает Фридман, возникает тогда, когда субъект в своей деятельности, направленной на некий объект, встречает какое-то затруднение, преграду. Однако проблемная ситуация – это не просто затруднение, преграда в деятельности субъекта, а осознанное субъектом затруднение, способ устранения которого он желает найти. Таким образом, в понятие проблемной ситуации Л.М. Фридман включает субъект. Значит, задача есть модель ситуации, элементом которой является субъект, осознавший затруднение в своей деятельности. Отсюда следует, что возникновение задачи обязано деятельности субъекта. Другими словами, Л.М. Фридман наделил понятие задачи «субъективными генами» [21, 24]. Заметим, что различные авторы по-разному подходят к соотношению понятий «задача» и «проблемная ситуация». Одни (Л.М. Фридман) считают первичным понятие проблемной ситуации [24], причем некоторые психологи считают субъекта элементом проблемной ситуации. Другие (С.Л. Рубинштейн) под проблемной ситуацией понимают некоторую объективную ситуацию, в которой берет начало процесс мышления [21]. Задача, по Рубинштейну, есть результат того, что проблемная ситуация, содержащая какие-то нераскрытые звенья, подвергается анализу со стороны человека. То есть, субъект рассматривается как элемент задачи. Существует и противоположная точка зрения, при которой первичным считается понятие задачи, а вторичным – понятие проблемной ситуации. Проблемная ситуация оценивается как фактор, рассматриваемый в отношении субъекта, тогда как задача признается существующей объективно.

Наиболее распространенным является использование термина «задача» для обозначения ситуации, включающей цель и условия ее достижения. Для понятия задачи характерны две стороны: объективная и субъективная. К первой относятся предмет действия, требование, место в системе задач, логическая структура решения задачи, определенность или неопределенность или неопределенность условия и т.д., ко второй – способы и средства решения.

В методике обучения математике многие годы была распространена классификация, основу которой составлял характер требования: а) задачи на доказательство; б) задачи на построение; в) задачи на вычисление. Длительный успех этой классификации обеспечивало то, что она в какой-то степени предопределяла метод решения каждого типа задач. В связи с расширением целей обучения и роли задач в их обеспечении в школьный курс математики начали проникать задачи, не укладывающиеся в традиционную типологию. Функции задач в обучении подчеркиваются в следующей классификации: а) задачи с дидактическими функциями; б) задачи с познавательными функциями; в) задачи с развивающими функциями (К.И. Нешков и А.Д. Семушкин). Данная классификация позволяет обоснованно осуществлять отбор задач, хотя на практике довольно трудно отделить друг от друга указанные типы задач. Задачи с дидактическими функциями предназначены для усвоения теоретического материала, в процессе решения второго типа задач учащиеся углубляют теорию и методы решения задач, задачи третьего типа характеризуют то, что их содержание может отходить от основного курса. Соглашаясь с авторами в целесообразности широкого использования задач в обучении, нельзя согласиться с тем, что развивающие функции присущи только задачам, содержание которых отходит от обязательного курса, расширяя его. Отметим, что указанная публикация является первой теоретической работой, в которой исследуются функции задачи (1971г)

В последнее время получила распространение типология задач, в которой каждый тип задач соотносится с компонентами учебной деятельности: организационно-действенным, стимулирующим и контрольно-оценочным. Указанное сопоставление выделяет следующие типы задач:

1) задачи, стимулирующие учебно-познавательную деятельность;

2) задачи, организующие и осуществляющие учебно-познавательную деятельность школьников;

3) задачи, в процессе решения которых осуществляется контроль и самоконтроль эффективности учебно-познавательной деятельности.

В зависимости от конкретизации учебной деятельности классификация будет наполняться более конкретным содержанием:

1) задачи, стимулирующие усвоение знаний, умений и навыков;

2) задачи, в процессе решения которых осуществляется усвоение знаний, умений и навыков;

3) задачи, контролирующие усвоение знаний, умений и навыков.

Теперь мы немножко поговорим о методике обучения решению математических задач. Методика решения задач впервые в достаточно общем виде была разработана Д. Пойа и представлена в известной книге «Как решать задачу?». Автор выделяет в решение задачи четыре этапа:

1) понимание постановки задачи;

2) составление плана решения;

3) осуществление плана;

4) взгляд назад (изучение и анализ плана решения).

Итак, методика обучения решению задач предполагает выделение спектра умений решать задачи. Первый этап составляют действия: выделение условия и требования задачи, объектов и отношений между ними, выполнение рисунка, отметка на нем данных и искомых элементов, краткая запись условия и заключения задачи. Содержание этого этапа решения, как правило, реализуется на практике. Второй этап включает в себя анализ условия и требования задачи. Под анализом условия задачи будем понимать выявление такой информации, которая непосредственно не задана условием, но присуща ему. Анализ требования задачи предполагает выяснение возможных путей ответа на вопрос задачи. Информация, являющаяся результатом анализа условия задачи, может быть получена следующими способами:

1) выведением следствий непосредственно из условия задачи;

2) переосмысливанием объектов (фигур, отношений между ними) с точки зрения других понятий;

3) заменой термина его определением;

4) использованием характеристических свойств понятия;

5) интерпретацией символических записей;

6) переводом содержания задачи на язык специальной теории и наоборот.

Важнейшим компонентом умения анализировать требование задачи является умение преобразовывать требование задачи в равносильное ему. Проблема формирования этого умения непосредственно связана с вооружением учащихся как можно большим числом признаков и свойств понятий. Выполнение анализа требования задачи предполагает наличие ассоциаций: осознание термина, обозначающего понятие, – осознание определения этого понятия и термина, обозначающего понятие, – осознание его характеристических свойств. Важными компонентами анализа требования задач является умение составлять вспомогательные задачи и умение видеть различные пути решения задачи.


Страница: