Методика обучения решению текстовых задач алгебраическим способомРефераты >> Педагогика >> Методика обучения решению текстовых задач алгебраическим способом
Содержание
Введение
Глава 1. Научно-методические основы обучения решению текстовых задач
§1. Что такое задача? Что значит решить задачу?
§2. Этапы процесса решения задачи
§3. Решение задач выделением 3-х этапов математического моделирования
Глава 2. Методика обучения построению математических моделей в соответствии с сюжетом задачи
§1. Роль аналитико-синтетических рассуждений в формировании умений решать задачи алгебраическим способом
§2. Система упражнений учебника «Математика» 5-6 класс Зубарева И.И., Мордкович А.Г. по формированию умений составления математических моделей
§3. Задания по формированию умений составления математических моделей
Заключение
Список литературы
Введение
Актуальность выбранной нами темы определяется тем, что далеко не все ученики основной школы осваивают алгебраический метод решения текстовых задач даже на базовом уровне. Причин тому великое множество. Одни из них носят общий характер: устоявшийся страх перед задачей, отсутствие общих представлений о рассматриваемых в задачах процессах, неумение устанавливать, что дано в задаче, что надо найти, выявлять по тексту взаимосвязи рассматриваемых в задаче величин и т.п. Другие свидетельствуют о несформированности определенных умений и навыков: незнание этапов решения задачи, непонимание содержания и цели собственной деятельности на каждом из них, неумение решать уравнения или неравенства (или их системы) определенного вида, неумение производить отбор корней уравнения или решений неравенства в соответствии с условием задачи и т.д. Недостатки в овладении необходимыми приемами рассуждений, незнание общих методов решения задач не дают возможности многим школьникам успешно работать над конкретной задачей.
Следует отметить и недостатки в методике построения различных моделей обучения как на этапе текущего обучения решению текстовых задач, так и на этапе работы с задачами в процессе обобщающего повторения по отдельной теме или по целому курсу. Работая над конкретной задачей в классе, учитель дает пояснения, сущность и значимость которых понимают и запоминают в классе лишь отдельные ученики. Как правило, эти пояснения не систематизированы учителем и носят локальный характер. Учитель не требует записи этих пояснений, их запоминания, что большей частью школьников воспринимается как сигнал: «это не столь важно, это можно забыть». А поэтому опыт этих учеников по решению задач носит неполный и бессистемный характер, а значит и воспользоваться им – дело почти безнадежное.
К субъективным причинам можно отнести влияние индивидуальных особенностей школьников на процесс усвоения материала и формирование необходимых умений. Затрудненное восприятие, плохая память, слабое владение анализом и синтезом, отсутствие достаточного опыта в решении простейших задач оказывают несомненное влияние на освоение такими учениками алгебраического метода решения текстовых задач.
Известно, что решение сюжетной задачи алгебраическим методом состоит в последовательной реализации трех этапов:
- перевод текста задачи на алгебраический язык – составление математической модели данной сюжетной задачи;
- решение полученной математической задачи – внутримодельное решение;
- ответ на вопрос задачи, перевод полученного результата на язык исходной ситуации – интерпретация внутримодельного решения.
Процесс обучения решению текстовых задач в контексте алгебры в основной школе построен так, что сначала школьники осваивают эту деятельность в пределах одной темы, а затем – на этапе обобщения и систематизации в пределах более крупного раздела.
Когда речь идет о решении текстовых задач в пределах одной темы, то сначала осваивается решение определенной математической задачи: решение уравнений определенного вида, системы уравнений, неравенства, системы неравенств или смешанной системы. После рассмотрения решения математической задачи определенного вида, например, решения уравнений второй степени с одной переменной (квадратных уравнений) ученикам предлагается решить ряд текстовых задач, решение каждой из которых сводится к только что изученной математической задаче – к уравнению второй степени с одной переменной. Таким образом, в контексте обучения решению текстовых задач в пределах определенной темы сначала ведется работа над вторым этапом – решением математической задачи (модели текстовой задачи), т.е. над внутримодельным решением. Это служит определенной подсказкой ученику при работе над задачей: у него есть четкий ориентир – вид модели. На этом этапе ученики довольно успешно справляются с решением текстовых задач. Значит, при обучении решению задач в пределах определенной темы акцент в работе над задачей можно и нужно перенести на первый и третий этапы: переводе задачи на математический язык и интерпретации полученного на втором этапе результата. Практика показывает, что существенные затруднения возникают у «средних» и «слабых» школьников именно на первом этапе, хотя и на этапе интерпретации тоже встречаются определенные ошибки, связанные как с невнимательностью, так и с неумением производить отбор решений.
Когда же требуется перенос знаний в новую ситуацию и отсутствует предопределенность вида математической модели, учащиеся часто не справляются с решением даже совсем несложных задач, хотя при работе над темой могли решать и более сложные задачи.
Поскольку наиболее сложным для учащихся является этап составления математической модели (уравнения или системы уравнений) целью исследования стала разработка комплекса упражнений, предназначенных для обучения составлению математических моделей реальных ситуаций, т.е. переводу сюжета задачи на математический язык.
Для достижения указанной цели необходимо решить следующие задачи:
1) проанализировать психолого-педагогическую литературу по данной теме;
2) изучить педагогический опыт учителей по данному вопросу;
3) изучить научно-методическую литературу, направленную на обучение решению текстовых задач;
4) разработать требования к упражнениям, подводящим к составлению математической модели ситуации, описываемой в задаче;
5) разработать комплекс упражнений, направленных на обучение составлению математический моделей.
Глава 1. Научно-методические основы обучения решению текстовых задач
§1. Что такое задача? Что значит решить задачу?
Понятие задачи имеет различные трактовки. Их обстоятельное исследование в психологической литературе было проведено Г.А. Баллом [1]. Термин «задача», отмечает Г.А. Балл, употребляется для обозначения объектов, относящихся к трем различным категориям:
1) к категории цели действий субъекта, требования, поставленного перед субъектом;
2) к категории ситуации, включающей, наряду с целью, условия, в которых она должна быть достигнута;
3) к категории словесной формулировки этой ситуации.