Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС
Для модифицирования исходного титаната бария добавками оксидов титана, кобальта, ниобия, ванадия и вольфрама использовали следующие соединения-прекурсоры:
- тетрахлорид титана TiCl4,
- титановая кислота H2TiO3,
- нитрат кобальта Co(NO3)2,
- гидроксид кобальта Co(OH)2,
- хлорид ниобия NbCl5
- мета-ванадат аммония NH4VO3
- пара-вольфрамат аммония (NH4)10W12O41*nH2O
В качестве полимерной матрицы для изготовления композиционных материалов использовали цианэтиловый эфир поливинилового спирта (ЦЭПС)
с молекулярной массой около 55000 и диэлектрической проницаемостью ε~19, синтезированный в ОАО "Пластполимер".
3.2 Методы синтеза
3.2.1 Модифицирование титаната бария введениемоксидных добавок золь-гель методом
Модифицирование титаната бария оксидными добавками осуществляли в Институте химии силикатов РАН осаждением из соответствующих прекурсоров с использованием золь-гель метода, основанного на реакциях поликонденсации неорганических соединений [37, 38]. Преимуществом данного метода является то, что он позволяет управлять структурой конечного продукта еще на стадии образования гелей, исключить многочисленные стадии промывки, так как в качестве исходных веществ используют соединения, не вносящие примеси в состав конечного продукта, а также обеспечить получение однородного продукта на молекулярном уровне и его высокую чистоту.
Для полного удаления непрореагировавших при гидролизе компонентов и обеспечения химической однородности вводимых в состав BaTiO3 оксидных добавок исследуемые образцы подвергали отжигу в муфельной печи в кварцевых тиглях при температуре 700С в течение 1 часа.
3.2.2 Изготовление композитов состава ЦЭПС-BaTiO3
Для приготовления композитов исследуемые наполнители диспергировали в ЦЭПС объемом 5 мл в расчетном количестве, соответствующем оптимальной концентрации наполнителя 40 об.%, установленной в серии ранее проведенных исследований [35]. Затем полученные образцы подвергали перемешиванию керамической мешалкой в закрытых стеклянных емкостях на вращающихся валках в течение 2 часов.
Полученные композиционные материалы методом полива через фильеру наносили тонким слоем на поверхность стекла с плотно притертым слоем алюминиевой фольги. Затем полученные образцы сушили в течение суток на воздухе и в течение 5 часов в вакууме при температуре 70С. После этого на поверхность композиционного материала наносили электроды из проводящей серебряной пасты Conductive Paste S MobIChem (Scientific Eng., Ltd.) площадью 1 см2. Полученные конденсаторы использовали для измерения диэлектрической проницаемости. Для сравнения в аналогичных условиях был изготовлен конденсатор с использованием исходного немодифицированного BaTiO3.
3.3 Методы исследования
3.3.1 Адсорбция кислотно-основных индикаторов
Полученные образцы анализировали индикаторным методом (адсорбции кислотно-основных индикаторов) с целью изучения изменений функционально-химического состава поверхности в зависимости от условий обработки. Данный метод основан на адсорбции кислотно-основных индикаторов с различными значениями величины рКа, характеризующей точку перехода между кислотной и основной формами индикатора (HInd Ind- + H+), сопровождающегося изменением его окраски. При взаимодействии с поверхностью происходит частичная адсорбция индикатора на активных центрах с соответствующим значением рКа, приводящая к изменению интенсивности окраски, которое можно зафиксировать спектрофотометрически, что позволяет количественно охарактеризовать содержание активных центров адсорбции данного типа.
Предварительно были приготовлены водные растворы кислотно-основных индикаторов, имеющих разные значения рКа перехода между кислой и основной формами в интервале от –5 до 15. Характеристические значения рКа используемых индикаторов и длины волн, соответствующие максимуму их оптического поглощения, приведены в таблице 3.
Таблица 3 - Характеристики кислотно-основных индикаторов
Индикатор |
рKa |
макс., нм |
Этиленгликоль |
14,2 |
200 |
Индигокармин |
12,8 |
610 |
Нильский голубой |
10,5 |
640 |
Тимоловый синий |
8,8 |
430 |
Бромтимоловый синий |
7,3 |
430 |
Бромкрезоловый пурпурный |
6,4 |
590 |
Метиловый красный |
5,0 |
430 |
Бромфеноловый синий |
4,1 |
590 |
Метиловый оранжевый |
3,5 |
460 |
М-нитроанилин |
2,5 |
340 |
Фуксин (основание) |
2,1 |
540 |
Бриллиантовый зеленый |
1,3 |
610 |
Кристаллический фиолетовый |
0,8 |
580 |
о-Нитроанилин |
0,3 |
410 |
п-Хлор-нитроанилин |
0,9 |
330 |
Динитроанилин |
4,4 |
340 |
В ходе эксперимента определяли оптическую плотность (D) растворов указанных индикаторов в следующих условиях:
1. К раствору индикатора, взятому в объеме Vind, в пробирках добавляли дистиллированную воду до 5 мл и после перемешивания измеряли оптическую плотность холостой пробы (D0).
2. К 5 мл раствора, полученного аналогично п.1, добавляли навеску исследуемого вещества массой m1 20 мг и после установления адсорбционно-десорбционного равновесия (через ~ 1 час) измеряли оптическую плотность (D1). При этом учитывалось изменение оптической плотности в результате как адсорбции индикатора поверхностью материала, так и взаимодействия исследуемого вещества с водой.
3. Навеску исследуемого вещества массой m2 20 мг помещали в дистиллированную воду объемом 3 мл и выдерживали в течение часа, давая возможность установиться адсорбционно-десорбционному равновесию между водой и поверхностью материала. После этого воду декантировали в другую пробирку, к ней добавляли раствор индикатора объемом Vind и доливали воду до 5 мл, после чего измеряли оптическую плотность (D2). При этом учитывалось изменение оптической плотности исключительно в результате взаимодействия исследуемого вещества с водой, что позволяло исключить этот фактор при сопоставлении результатов.