Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС
Рефераты >> Химия >> Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС

Рисунок 11 – Взаимодействие между гидроксильными группами наполнителя и матрицы ЦЭПС в исследуемых композитах

Кроме того, установлена отрицательная корреляция между диэлектрической проницаемостью композитов и суммарным содержанием льюисовских основных и кислотных центров с наиболее низкими и высокими значениями рКа, соответствующими атомам кислорода и металла на поверхности (рисунок 12). Такие центры обладают наименьшей подвижностью под воздействием внешнего поля. По-видимому, введение добавок приводит к разупорядочению элемент-кислородных мостиковых связей в поверхностном слое титаната бария и гидроксилированием поверхности в результате хемосорбции атмосферной влаги.

Рисунок 12 – Зависимость диэлектрической проницаемости композитов от общего содержания льюисовских основных (рКа<0) и кислотных (рКа 14,2) центров

4.3 Изменение фазового состава поверхностного слоя BaTiO3 в результате модифицирования

Результаты исследования образцов исходного и модифицированного BaTiO3 методом ЭСДО, приведены в таблице 5 в виде математического разделения спектров на составляющие, описываемые распределением Ферми-Дирака по методике [39.]

Таблица 5 - Энергия середины спектрального перехода (E0, эВ) и интенсивность сигнала (I, отн. ед.) в спектрах ЭСДО исходного и модифицированного BaTiO3

Добавка

Прекурсор

Интенсивность перехода I, отн. ед. при различных значениях E0

3,37 эВ

3,25-3,27 эВ

3,17-3,22 эВ

2,34 эВ

1,55 эВ

Исходный BaTiO3

   

87,9

   

TiO2

TiCl4

 

22,7

78,6

   

H2TiO3

   

101,3

   

Co3O4

Co(NO3)2

 

33,2

 

10,0

16,6

Nb2O5

NbCl5

12,5

12,5

89,0

   

Co3O4+Nb2O5

Co(NO3)2 +NbCl5

 

6,9

42,5

   

Полученные данные показывают, что на поверхности исходного BaTiO3титан находится в искаженной октаэдрической координации (E03,2 эВ), близкой к координационному комплексу [TiO6] в составе рутила (E03,13 эВ [40]).

Введение в состав поверхностного слоя BaTiO3 диоксида титана с использованием прекурсора TiCl4 сопровождается незначительным дополнительным искажением координационных комплексов [TiO6]. Однако по общей отражательной способности и координационному состоянию титана на поверхности порошки модифицированного BaTiO3 мало отличаются от исходного титаната бария независимо от типа используемого прекурсора.

В случае введения в состав поверхностного слоя титаната бария оксида кобальта наблюдается появление сильно поглощающих фаз с энергиями середины спектрального перехода 2,34 и 1,55 эВ, соответствующих координационным комплексам кобальта с различной степенью окисления.

Введение оксида ниобия не изменяет отражательную способность BaTiO3. Однако внедрение в состав поверхностных структур ионов Nb5+, обладающих большим радиусом и высоким эффективным зарядом, приводит к повышении величины E0 до 3,37 эВ, что соответствует дополнительному разупорядочению связей Ti-O с образованием сильно искаженного "анатазоподобного" октаэдрического комплекса [40], повышению их полярности и, соответственно, росту диэлектрической проницаемости.

При одновременном введении эквимолярных количеств оксидов ниобия и кобальта их влияние взаимно компенсирует друг друга, что, по-видимому, обусловлено их взаимодействием с образованием так называемого "серого фильтра", существенно снижающего отражательную способность материала. При этом образование кобальт-ниобиевых соединений не влияет на координационное состояние атомов титана в поверхностном слое модифицированного BaTiO3. Это является вероятной причиной отсутствия существенного изменения диэлектрической проницаемости соответствующего гибридного композита по сравнению с композитом на основе исходного титаната бария.

4.4 Влияние модифицирования на удельную поверхность BaTiO3

Данные измерения удельной поверхности образцов модифицированного BaTiO3 методом БЭТ показывают, что введение смеси Co3O4 и Nb2O5 не приводит к значительному изменению Sуд., в то время как при введении V2O5 и WO3 удельная поверхность существенно возрастает.

Таблица 6 - Удельная поверхность исходного и модифицированного BaTiO3

Образец

Исходный

BaTiO3

BaTiO3 с добавками

Co3O4 + Nb2O5

V2O5

WO3

Sуд., м2/г

2,13

2,33

2,65

3,14

Удельная поверхность закономерно снижается с ростом диэлектрической проницаемости (рисунок 13), который, по-видимому, обусловлен уменьшением размера частиц.

Рисунок 13 - Зависимость диэлектрической проницаемости композитов ЦЭПС-BaTiO3 от удельной поверхности наполнителя

4.5 Влияние модифицирования BaTiO3 оксидными добавками на структуру поверхностного слоя композитов

Методом АСМ был исследован профиль поверхности композитов на основе ЦЭПС с BaTiO3 в исходном состоянии и после модифицирования введением оксидов кобальта и ниобия.


Страница: