Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС
Полимеры такого типа получают двумя способами:
- введением цианэтиловой группы в полимеры, имеющие реакционно-способные атомы водорода,
- полимеризацией или сополимеризацией мономеров, содержащих цианэтиловые группировки.
Важным классом полимерных материалов, обладающих высокими значениями диэлектрической проницаемости, являются цианэтиловые эфиры поливинилового спирта (ЦЭПС) общей формулы:
в которой х, у, w, z являются целыми числами, удовлетворяющими следующим условиям: w + x + y = 100, где 10 £ w £ 80, 0 < õ £ 30, 10 £ y £ 80, 0 < z £ 10.
ЦЭПС представляют собой сополимеры, получаемые посредством реакции цианэтилирования поливинилового спирта (ПВС) при взаимодействии с акрилонитрилом. Цианэтилирование катализируется щелочами, третичными аминами, алкоголятами щелочных и щелочноземельных металлов и др. Степень полимеризации зависит от свойств исходного ПВС и порой достигает до 105.
Наличие в ЦЭПС полярных функциональных групп –((CH2)2–CN), –ОН,
–C–O–С– обеспечивает при нормальных условиях высокие значения e =18-25 при tgδ 0,10-0,2, причем электрическая прочность пленок составляет 35-45 МВ/м [22-23].
Одним из перспективных направлений является создание новых композиционных полимерных материалов с высоким удельным энергосодержанием (более 105 Дж/м3) для высоковольтной импульсной техники. Такие материалы могут найти применение в качестве изоляции емкостных накопителей энергии, работающих на импульсном напряжении. Композиционные полимерные материалы для емкостных накопителей энергии должны обладать стабильными электрофизическими характеристиками в широком диапазоне частот внешнего электрического поля. Проблема заключается в том, что существенное повышение диэлектрической проницаемости композиционных полимерных материалов возможно при условии высокой степени полярности и совместимости составляющих его компонентов. Повышение полярности компонентов органического происхождения ведет к возникновению частотных областей дисперсии комплексной диэлектрической проницаемости, что обуславливает нестабильность характеристик самой полимерной матрицы. Введение мелкодисперсного наполнителя неорганического происхождения существенно модифицирует структуру и свойства композиционных полимерных материалов за счет межфазных взаимодействий и образования граничного нанослоя вблизи частиц наполнителя [24-28]. Это определяет особенности временнoго распределения локального поля в отдельных областях полимерной системы и частотной дисперсии эффективной комплексной диэлектрической проницаемости КПМ. В этой связи, при разработке КПМ необходимо иметь информацию о частотном спектре комплексной диэлектрической проницаемости самой полимерной матрицы и основных закономерностях изменения параметров спектра диэлектрической релаксации при введении в полимерную матрицу частиц наполнителя неорганического происхождения. В [29-30] показано, что применение пластифицированного поливинилхлорида (ПВХ) в качестве полимерной матрицы и материалов с высокой диэлектрической проницаемостью – сегнетоэлектрической керамики ЦТС-19 или диоксида титана TiO2 с размером частиц ~1 мкм. позволяет получать композиционные полимерные материалы с высоким удельным энергосодержанием (до 105 Дж/м3) в миллисекундном диапазоне длительностей фронта импульсного напряжения (τφ=5 .10 мс).
1.3.2 Неорганические диэлектрические материалы
Материалы, обладающие большими значениями диэлектрической проницаемости, а также материалы, диэлектрическая проницаемость которых определенным образом изменяется при изменениях температуры, представляют большой интерес для развития электронной техники.
В серии исследований, проводимых начиная с конца 1930х гг. [31], было показано, что одним из наиболее перспективным классов материалов, обладающих высокой диэлектрической проницаемостью и особым характером ее зависимости от температуры, являются титанаты металлов II группы Периодической системы. В частности, для ряда специфических задач электроники были разработаны системы, состоящие из материалов с положительным и отрицательным температурным коэффициентом диэлектрической проницаемости, в качестве первого из которых титанат магния, а в качестве второго – соединение двуокиси титана с доломитом MgCa(CO3)2 [32].
Было также обнаружено резкое различие в диэлектрических свойствах титанатов в зависимости от природы металла (таблица 1), определяющей тип кристаллической решетки.
Таблица 1 - Типы кристаллической решетки и значения диэлектрической проницаемости титанатов металлов II группы Периодической системы
Под - группа |
Щелочно-земельный металл |
Тип кристаллической решетки |
Диэлектрическая проницаемость |
I |
Be Ca Sr Ba |
- Перовскит Перовскит Перовскит |
70 115 150 >1000 |
II |
Mg Zn Cd |
Ильменит - Ильменит |
17 30 62 |
Наблюдаемые различия могут быть обусловлены двумя факторами – размерами и, соответственно, поляризуемостью катионов, а также типом кристаллической решетки, соответствующей структуре перовскита (титанаты кальция, стронция и бария) или ильменита (титанаты магния, цинка и кадмия).
Дальнейшие исследования показали, что преобладающее значение имеет второй фактор и решетка типа перовскит (рисунок 4) благоприятствует получению значительно более высоких величин диэлектрической проницаемости [32].
С увеличением радиуса иона щелочноземельного металла в решетках типа перовскит должно несколько увеличиться расстояние между ионами, что приводит к уменьшению жесткости связи между ними или к большей податливости в электрическом поле, т. е. к большей поляризуемости и возрастанию диэлектрической проницаемости.
Рисунок 4 - Кристаллическая решетка типа перовскит на примере BaTiO3
Среди перовскитов особо выделяется титанат бария, обладающий диэлектрической проницаемостью, превышающей 1000. Эту особенность титаната бария можно сопоставить с тем, что среди исследованных соединений, как видно из данных, приведенных в таблице 2, он является единственным, у которого расстояние между ионами титан — кислород больше, чем сумма их радиусов, что определяет рыхлость кристаллической решетки титаната бария и его аномально высокую диэлектрическую проницаемость.
Таблица 2 - Структурные характеристики титанатов кальция, стронция и бария
Титанат |
Размер ребра элементарного куба |
Расстояние между ионами Ti и О |
Сумма радиусов ионов Ti и О |
Титанат Ca Титанат Sr Титанат Ba |
3,80 3,89 3,97 |
1,90 1,95 1,99 |
1,96 1,96 1,96 |