Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС
Рефераты >> Химия >> Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС

Оглавление

ВВЕДЕНИЕ

1. АНАЛИТИЧЕСКИЙ ОБЗОР

1.1 Органо-неорганические композиционные материалы

1.2 Диэлектрические материалы

1.2.1Основные виды диэлектрических материалов

1.2.2 Основные типы и особенности сегнетоэлектриков

1.2.3 Важнейшие характеристики диэлектриков

1.2.4 Факторы, влияющие на свойства диэлектрических материалов

1.3 Материалы с высокой диэлектрической проницаемостью

1.3.1 Диэлектрические полимерные материалы

1.3.2 Неорганические диэлектрические материалы

1.3.3 Титанат бария – сегнетоэлектрик со сверхвысокой диэлектрической проницаемостью

1.3.3.1 Структурные особенности кристаллов BaTiO3

1.3.3.2 Зависимость диэлектрических свойств BaTiO3 от температуры

1.3.3.3 Влияние примесей на диэлектрические свойства BaTiO3

1.3.4 Органо-неорганические диэлектрические композиты

2. ЦЕЛЬ И ЗАДАЧИ РАБОТЫ

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Объекты и методы исследования

3.1.1 Химические реактивы

3.2 Методы синтеза

3.2.1 Модифицирование титаната бария введением оксидных добавок золь-гель методом

3.2.2 Изготовление композитов состава ЦЭПС-BaTiO3

3.3 Методы исследования

3.3.1 Адсорбция кислотно-основных индикаторов

3.3.2 Электронная спектроскопия диффузного отражения

3.3.3 Атомно-силовая микроскопия

3.3.4 Измерение удельной поверхности

3.3.5 Измерение диэлектрических свойств

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

4.1 Изменение диэлектрической проницаемости композитов ЦЭПС-BaTiO3 в результате модифицирования титаната бария

4.2 Изменение функционального состава поверхности образцов BaTiO3 в результате модифицирования

4.3 Изменение фазового состава поверхностного слоя BaTiO3 в результате модифицирования

4.4 Влияние модифицирования на удельную поверхность BaTiO3

4.5 Влияние модифицирования BaTiO3 оксидными добавками на структуру поверхностного слоя композитов

5. ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ А

ПРИЛОЖЕНИЕ Б

ПРИЛОЖЕНИЕ В

ВВЕДЕНИЕ

Полимерно-неорганические композиты находят широкое применение в различных областях техники благодаря сочетанию свойств полимера и функционального наполнителя, что позволяет получать материалы с регулируемыми характеристиками в зависимости от отношения компонентов, размера частиц наполнителя и условий синтеза. Применение композитов позволяет сочетать достоинства полимерной матрицы (гибкость, устойчивость к механическим воздействиям) и высокие электрофизические свойства твердотельных функциональных наполнителей, создавать гибкие технологии и снижать себестоимость изделий электронной техники. Поскольку свойства композитов определяются структурой межфазного слоя, то они в значительной степени зависят от величины поверхности наполнителя и содержания функциональных групп.

В связи с этим модифицирование и оптимизация функционального состава поверхности наполнителей являются эффективным подходом к получению композитов с заданными характеристиками, что обусловливает актуальность и практическую значимость работы.

Композиты на основе матрицы из цианэтилового эфира поливинилового спирта (ЦЭПС) с диспергированным в ней титанатом бария (BaTiO3) применяют в качестве защитного диэлектрического слоя в электролюминесцентных источниках света. Одной из важнейших характеристик этих материалов является высокая диэлектрическая проницаемость (e). В данной работе исследована возможность повышения диэлектрической проницаемости рассматриваемых композитов путем модифицирования поверхности субмикрочастиц BaTiO3 оксидными наноструктурами.

1. АНАЛИТИЧЕСКИЙ ОБЗОР

1.1 Органо-неорганические композиционные материалы

Композиционные материалы(композиты) – многокомпонентные материалы, как правило, состоящие из пластичной основы (матрицы), армированной наполнителями (дисперсными, волокнистыми, хлопьевидными и т.д.), обладающими специфическими свойствами (например, высокой прочностью, жесткостью и т.д.) [1]. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьирование состава матрицы и наполнителя, их соотношения, а также степени дисперсности и других характеристик наполнителя позволяет получать широкий спектр материалов с требуемым набором свойств. По сравнению с рядом других классов материалов композиты отличаются легкостью в сочетании с улучшенными механическими свойствами [2-4]. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Подбор оптимального соотношения между компонентами и регулирование их физико-химических характеристик обеспечивает получение композиционных материалов с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создание композиций с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

Выделяют два основных вида полимерных связующих (матриц) – на основе термореактивных и термопластичных полимеров. В последние годы в качестве связующих все шире применяют также смеси на основе обоих типов полимеров, а также различные типы модифицированных связующих [5].

Наряду со связующим, важнейшим элементом структуры полимерных композиционных материалов являются наполнители. Функции наполнителя в полимерных композиционных материалах весьма разнообразны – от формирования комплекса механических свойств до придания материалу разнообразных специфических свойств [5]. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает его монолитность, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям. В зависимости от типа наполнителя композиционные материалы с полимерной матрицей делятся на стеклопластики, углепластики, органопластики, текстолиты, композиты с порошковыми наполнителями и т.д. [6]. Использование наполнителей позволяет изменять механические, электромагнитные, физико-химические характеристики исходного полимера, а, в ряде случаев, и снижать стоимость конечного композита по сравнению со стоимостью полимера за счет использования более дешевого, чем полимер, наполнителя.

Полимерные композиционные материалы называют также гибридными материалами, полученными за счет взаимодействия химически различных составляющих (компонентов), формирующих определенную структуру, отличающуюся от структур исходных реагентов, но часто наследующую определенные мотивы и функции исходных структур [7].

Основные методы получения гибридных материалов – интеркаляционный, темплатный синтез, золь-гель процесс, гидротермальный синтез. Для природных композитов размер неорганических частиц лежит в пределах от нескольких микрон до нескольких миллиметров, в результате чего материал становится неоднородным, что иногда можно заметить даже невооруженным глазом. Если уменьшать размер неорганических частиц такого материала до размера молекул органической части (нескольких нанометров), то можно повысить однородность композита и получить улучшенные или даже абсолютно новые свойства материала. Такие композиты часто называют гибридными наноматериалами [7]. Неорганическими строительными блоками таких материалов могут являться наночастицы, макромолекулы, нанотрубки, слоистые вещества (включая глины, слоистые двойные гидроксиды, некоторые ксерогели).


Страница: