Диэлектрические композиты на основе модифицированного субмикронного титаната бария и цианового эфира ПВС
Соотношение между ионной и электронной поляризацией характеризует меру упорядоченности электронов относительно ионов кристаллической решетки:
(2)
По вкладу в величину поляризации и диэлектрическую проницаемость as> ad> ai>ae. Эти составляющие поляризуемости находят из емкостных, микроволновых и оптических измерений в широком интервале частот (f) (рисунок 1).
Поляризуемость и диэлектрическая проницаемость диэлектриков сильно зависят от частоты прилагаемого электрического поля f.
При f <103 Гц все составляющие дают вклад в величину p. При f>106 объемный заряд не успевает образоваться у большинства ионных кристаллов. При f>109 (микроволновая область) - нет поляризации диполей. Область f >1012 (оптическая), где единственная составляющей поляризации является ae. В оптической области n2 = e'¥ (показатель преломления в видимой области спектра).
Общий вид зависимости диэлектрической проницаемости от частоты приведен на рисунке 1.
Рисунок 1 - Зависимость диэлектрической проницаемости от частоты
В области между и диэлектрическую проницаемость представляют в виде комплексной величины e* = e' - je", где e` - вещественная составляющая, а
где w = 2pf (угловая частота), t - время релаксации (сейчас для описания сложных процессов поляризации в диэлектриках вводится понятие "распределение времен релаксации").
2. Тангенс угла диэлектрических потерь (tgδ) – безразмерная величина, характеризующая рассеяние электрической энергии в конденсаторе, связанное с переходом этой энергии в тепловую (нагревом конденсатора) и рассеянием в окружающей среде. δ – угол потерь, дополняющий до 90угол сдвига между током и напряжением в цепи конденсатора и отличный от нуля в силу наличия у реального диэлектрика конечного, а у обкладок – отличного от нуля сопротивления постоянному току и запаздывания поляризации диэлектрика по отношению к изменению внешнего поля. Значения tgδ при заданных внешних условиях зависит от свойств диэлектрика (на не слишком высоких частотах) и материала обкладок. Определяющими величину tgδ процессами в диэлектрике являются его электропроводность и релаксационная поляризация.
Тангенс диэлектрических потерь определяется соотношением:
"/` = tg (4) |
Величина tgd для высококачественных диэлектриков составляет порядка 0,001. Например для керамических конденсаторов номиналом (емкостью С) 10 .50 пФ tgd не превышает 1,5(150/С+7).10-4. Для конденсаторов номиналом С > 50 пФ tgd не выше 0,0015. Для конденсаторов с емкостью порядка 0,01 мкФ tg ~ 0,035.
Характеристики диэлектриков определяют с использованием вольт-емкостных (C-V) или вольт-фарадных (ВФХ) методов [15].
1.2.4 Факторы, влияющие на свойства диэлектрических материалов
Одним из важнейших факторов, определяющим диэлектрические свойства материалов, является характер остаточной поляризации после прекращения действия внешних электрических, механических и тепловых полей.
В отсутствии внешнего электрического поля сегнетоэлектрики, как правило, имеют доменную структуру, то есть разбиваются на микроскопические области, обладающие спонтанной поляризацией.
Сегнетоэлектрики обладают высокой ` и остаточной поляризацией, что определяет высокую емкость изготавливаемых на их основе конденсаторов. Зависимость между величиной поляризации (Р, Кл/см2) и напряженностью электрического поля характеризуется гистерезисом. Форма гистерезиса определяет величину остаточной поляризации (РR) и коэрцитивного поля (Нс), которое снимает поляризацию. Например, для BaTiO3 P s = 0,26 Кл/см2 при 23 С. Зависимость ` от Т достигает максимума при температуре Кюри-Вeйсса (Тс).
Под действием электрического поля могут происходить следующие процессы: изменение направления поляризации доменов; возрастание поляризации в пределах домена, если не все октаэдры имели одно направление поляризации; движение "стенок" доменов, т.е. изменение их размеров (рисунок 2) .
В антисегнетоэлектриках спонтанная поляризация Ps = 0, отсутствует гистерезис, но вблизи Тc также наблюдается максимальная e'.
Рисунок 2 - Схема ориентации вектора поляризации структурных единиц в сегнетоэлектриках
Величина напряженности электрического поля может влиять на фазовые переходы второго рода в сегнетоэлектриках (рисунок 3).
Рисунок 3 - Влияние температуры на ориентационные фазовые переходы типа порядок-беспорядок в PbZrO3
Поскольку максимальная диэлектрическая проницаемость сегнетоэлектриков достигается при Tc, то необходимо приблизить Тс к рабочей температуре (обычно около 25 С).
1.3 Материалы с высокой диэлектрической проницаемостью
1.3.1 Диэлектрические полимерные материалы
Полимеры с особыми электрическими свойствами находят все более широкое применение в толстопленочной электронике для создания функциональных слоев и композитов. Использование полимеров позволяет построить более гибкие, перенастраиваемые технологии, снизить себестоимость продукции. В частности, полимеры с высоким значением диэлектрической проницаемости используются при формировании конденсаторов а также электролюминесцентных источников света (ЭЛИС).
Выбор полимерного связующего для композитов, составляющих макроструктуру электролюминесцентного конденсатора, определяется требованиями к электрофизическим свойствам функциональных слоев.
Разработка новых высокомолекулярных соединений с высокой ε внесла бы существенный вклад в производство изделий пленочной электроники, конденсаторов, а также электролюминесцентных источников света [16, 17, 21].
Широко применяемые полимерные материалы характеризуются невысокими значениями , которые не превышают 1,5–4 [18]. Диэлектрическую постоянную полимера можно увеличить до 4–6 посредством его растворения в некоторых низкомолекулярных диэлектриках с большим значением ε. Это, однако, связано с повышением электропроводности и tg δ материала, что очень нежелательно [19].
Включение в основную цепь полимера боковых ответвлений с сильно полярными группами, например цианэтиловыми, увеличивает ε полимеров, чаще всего не понижая их других диэлектрических свойств [20].