Лекции по гидравлике
Рефераты >> Физика >> Лекции по гидравлике

звание капиллярности. Жидкость в трубке малого диаметра (капилляре) будет поднимать­ся, если жидкость по отношению к стенке капилляра будет смачивающей жидкостью, и наоборот, будет опускаться, если жидкость для стенки капилляра окажется не смачиваю­щей. Высоту h подъёма (опускания) жидкости в капилляре с диаметром d можно опре­делить из соотношения:

? где: А - постоянная зависящая от свойств жидкости.

Для водымм,

Для ртути , мм.

Силы поверхностного натяжения малы и проявляются при малых объёмах жидкости. Величина напряжений на границе раздела зависит от температуры жидкости; при увели­чении температуры внутренняя энергия молекул возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверх­ностного натяжения.

Растворимость газов в капельных жидкостях.В реальных жидкостях всегда нахо­дится в растворённом состоянии газ. Это может быть воздух, азот, углеводородный газ, углекислотасероводороди др. Наличие газа растворённого в жидкости может

оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы. Так при снижении давления из жидкости выделяет­ся свободный газ, который может стать источником такого нежелательного явления как кавитация; выделяющийся газ может оказаться не безопасным для окружающей среды (HiS), огнеопасным и взрывоопасным (углеводородный газ). Газ, растворённый в жидко­сти, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др. По этой причине знание особенностей и законов рас­творения газа в жидкости крайне желательно.

Количество газа, которое может раствориться в капельной жидкости, зависит от фи­зико-химических свойств самой жидкости и растворяемого в ней газа, а также от темпера­туры и давления. Максимальное количество газа, которое может быть растворено в дан­ной жидкости носит название предельной газонасыщенности для данного газа s0. Естест­венно, что величины предельной газонасыщенности для разных газов будут разными. Другой характеристикой процесса растворения газа в жидкости является давление насы-

чении температуры внутренняя энергия молекул возрастает и, естественно, уменьшается напряжение в пограничном слое жидкости и, следовательно, уменьшаются силы поверх­ностного натяжения.

Растворимость газов в капельных жидкостях.В реальных жидкостях всегда нахо­дится в растворённом состоянии газ. Это может быть воздух, азот, углеводородный газ, углекислота, сероводород HiS и др. Наличие газа растворённого в жидкости может оказывать как благоприятное воздействие (снижается вязкость жидкости, плотность и т.д.), так и неблагоприятные факторы. Так при снижении давления из жидкости выделяет­ся свободный газ, который может стать источником такого нежелательного явления как кавитация; выделяющийся газ может оказаться не безопасным для окружающей среды , огнеопасным и взрывоопасным (углеводородный газ). Газ, растворённый в жидко­сти, как и газ в свободном состоянии может также способствовать коррозии стенок труб и оборудования, вызывать химические реакции, ведущие к образованию отложений твёрдых солей на стенках труб, накипей и др. По этой причине знание особенностей и законов рас­творения газа в жидкости крайне желательно.

Количество газа, которое может раствориться в капельной жидкости, зависит от фи­зико-химических свойств самой жидкости и растворяемого в ней газа, а также от темпера­туры и давления. Максимальное количество газа, которое может быть растворено в дан­ной жидкости носит название предельной газонасыщенности для данного газа s0. Естест­венно, что величины предельной газонасыщенности для разных газов будут разными. Другой характеристикой процесса растворения газа в жидкости является давление насы­щения , это такое минимальное давление в жидкости, при котором достигается насы­щение капельной жидкости газом. При невысоких давлениях значительно усту­пающих величине давления насыщения справедлив закон растворимости Генри:

Количество газа растворимого в единице объёма жидкости пропорцио­нально давлению. При увеличении дав­ ления до давления насыщения величина

Кривая растворимости газа в жидкости s(p). коэффициента растворимости газа

— давление насыщения, sn — величина

снижается, ппегтеттьнои гязонясьттттенноети

В жидкости может одновременно

растворяться целая группа различных газов; нередки случаи, когда капельная жидкость и растворяемый в ней газ имеют одинаковую природу (нефть и углеводородные газы); в по­следнем случае между жидкостью и газом может существовать весьма условная граница, зависящая от температуры смеси и других прочих условий.

Испаряемость.При повышении температуры жидкости и, в некоторых случаях, при снижении давления часть массы капельной жидкости постепенно переходит в газообраз­ное состояние (пар). Интенсивность процесса парообразования зависит от температуры кипения жидкости при нормальном атмосферном давлении: чем выше температура кипе­ния жидкости, тем меньше её испаряемость. Однако, более полной характеристикой испа­ряемости следует считать давление (упругость) насыщенных паров, данное в функции температуры. Чем больше насыщенность паров при данной температуре, тем больше ис­паряемость жидкости. с_

АдсорбцияАдсорбцией принято называть концентрацию одного из веществ, проис­ходящую в его поверхностном слое, т.е. на границе раздела двух фаз (например, жидкость и поверхность твёрдого тела). Такая концентрация молекул жидкости на поверхности твёрдого тела обуславливается силами межмолекулярного взаимодействия. Так сила при­тяжения молекул жидкости со стороны молекул твёрдого тела неизмеримо выше, силы притяжения оказываемой со стороны молекул самой жидкости. По этой причине на по­верхности твёрдого тела образуется устойчивая пленка, состоящая из молекул жидкости, которая способна удерживаться на поверхности твёрдого тела даже в том случае, когда вдоль поверхности твёрдого тала перемещается поток жидкости. Сильное притяжение со стороны молекул твёрдого тела могут испытывать также и молекулы второго и третьего слоев молекул жидкости, т.е. образующаяся на поверхности твердого тела плёнка из час­тиц жидкости может быть многослойной. Поскольку сила взаимодействия между молеку­лами убывает с увеличением расстояния между ними, то молекулы удалённых от поверх­ности твёрдого тела слоев легко разрушаются под действием различных сил, т.е. внешние слои молекул жидкости крайне неустойчивы. Процесс разрушения образованной плёнки из жидких молекул называется десорбцией. Как правило, эти два процесса идут одновре­менно, образуя состояние неустойчивого равновесия.


Страница: