Лекции по гидравлике
Рефераты >> Физика >> Лекции по гидравлике

определение уклона дна, необходимого для пропуска заданного расхода жид­кости при заданном заполнении сечения,

определение степени наполнения трубопровода для пропуска заданного рас­хода жидкости при известном уклоне дна.

Решение всех этих задач сводится к решению уравнения Шези при различных вари­антах задания исходных данных Анализируя результаты решения таких задач нетрудно обнаружить, что для каждого сечения трубопровода существует так называемая эффек­тивная степень заполнения русла, при которой достигается максимальный расход при ус­ловии минимальо возможных потерях напора Это объясняется тем, что при увеличении площади живого сечения потока увеличивается также и длина смоченного периметра На­чиная с некоторой величины (соответствующей эффективной степени заполнения русла), увеличение длины смоченного периметра начинает «обгонять» рост площади живого се­чения. При этом дальнейшее увеличение расхода жидкости в трубопроводе будет сопря­жено со значительными потерями напора.

12. Движение неньютоновских жидкостей 12.1. Некоторые характеристики и реограммы неньютоновских жидкостей.

Изучение процесса движения неньютоновских жидкостей является весьма трудоём­кой задачеё как с точки зрения полноты понимания всех физико-химических процессов сопровождающих такое движение сложного физического тела, так и с точки зрения мате­матического описания этого явления. Как известно, все неньютоновские жидкости отли­чаются от классической ньютоновской жидкости видом зависимости градиента давления

от величины касательного напряжения. Графики таких зависимостейносят на-

звание кривых течения неньютоновских жидкостей или реограмм. На рисунке представ­лены реограммы различных типов неньютоновских жидкостей (1 - дилатантная жидкость, 3 - псевдопластическая жидкость, 4 - вязкопластическая жидкость) по сравнению с ана­логичной характеристикой классической ньютоновской жидкостью (линейная зависи­мость - 2).

Первые два вида неньютоновских жидкостей: дилатантные и псевдопла­стические описываются одинаковыми уравнениями реограмм с различными характеристиками коэффициентов k -меры консистенции жидкости и п - ме­ры степени отличия поведения ненью­тоновской жидкости от классической ньютоновской жидкости.

Для характеристики названных выше типов неньютоновских жидкостей часто используется ещё одна дополнительная ме­ра - эффективная кажущаяся вязкость жидкости. Суть этой меры состоит в том, что для любой конкретной величины касательного напряжения в неньютоновской жидкости мож­но поставить в соответствии величину вязкости ньютоновской жидкости с одинаковой ве­личиной касательных напряжений, т.е. реограмма реальной неньютоновской жидкости заменяется линейной зависимостью:

Естественно, что величина эффективной кажущейся вязкости жидкости будет зави­сеть от интервала значений касательного напряжения, на котором эта величина вычисля­ется.

Вязкопластические (бингамовские) жидкости обладают как свойствами твёрдого те­ла (при напряжениях меньших величины статического напряжения сдвига ), так и

свойствами жидкости (при касательных напряжениях в жидкости ). Когда вязкопла-

стическая жидкость проявляет свойства твёрдого пластичного тела, то роль кристалличе­ской решётки в вязкопластической жидкости осуществляет образующаяся в ней жёсткая

пространственная структура, приводящая к полной неподвижности жидкости. Поэтому реограмму вязкопластических жидкостей (в) принято рассматривать как некоторую сумму реограмм твёрдого пластичного тела (а) и классической ньютоновской жидкости (б). Уравнение такой реограммы можно представить в следующем виде:

Вид реограмм неньютоновских жидкостей, в том числе и вязкопластичных жидко­стей, осложняется проявлением тиксотропных свойств таких жидкостей. Принято считать, что величина статического напряжения сдвига вязкопластичных жидкостей зависит от продолжитнльности нахождения такой жидкости в состоянии покоя, другими словами, прочность образующейся структурной решётки в вязкопластичной жидкости увеличива­ется со временем. Повторное приведение жидкости в состояние движения происходит при значительно более низком статическом напряжении сдвига. Поэтому принято различать величину начального статического напряжения сдвига (после длительной остановки жид­кости) и динамическую величину (после кратковременных перерывов в работе). Тиксо-тропные свойства жидкостей обратимы, т.е. при восстановлении существовавшего ранее режима течения жидкости их действие прекращается.

Следует также отметить тот факт, что на величину статического напряжения сдвига в значительной степени влияет вибрация, разрушающая образующуюся в жидкости про­странственную структуру. При этом величина т0 может быть снижена практически до 0, и

поведение такой жидкости не будет отличаться от классической ньютоновской жидкости. Особенности строения вязкопластических жидкостей приводят к некоторым пара­доксам. Так, к примеру, в сообщающихся сосудах с вязкопластической жидкостью уровни в коленах сосудов устанаыливаются на разных высотах, зависящих от свойств жидкости и

у

размеров сосудов. ! *

12.2. Движение вязкопластических жидкостей в трубах.

Для того, чтобы вязкопластичная жидкость начала перемещаться необходимо соз­дать между начальным и конечным сечениями участка трубы длиной / некотурую раз­ность напоров, при которой будет преодолена величина начального статического напря­жения сдвига. При этом жидкость отрывается от стенок трубы и первоначально дви­жется на подвижном ламинарном слое, сохраняя свою прежнюю пространственную структуру, т.е. с одинаковыми скоростями по всему отсеку потока. Разрушение этой структуры происходит позже и при некотором превышении напора.

Поскольку в начальный момент времени силы трения будут возникать только у сте­нок трубы, то уравнения равновесия можно запмсать в следующем виде:

Необходимая разность напоров между началом и концом участка трубы определится следующим образом:

Таким образом, при превышении разности напоров расчётную величину жидкость начнёт двигаться по трубе, причём характер (режим) её движения будет зависеть от вели­чины. При движении вязкопластичной жидкости возможны три режима течения её: структурный, ламинарный и тутбулентный.


Страница: