Нейрокомпьютерные системы
Рефераты >> Программирование и компьютеры >> Нейрокомпьютерные системы

Чтобы получить на выходе нейрона единичное значе­ние, как минимум два из трех его входов должны равнять­ся единице; в противном случае его выход будет нулевым. Таким образом реализуется правило двух третей, описан­ное в [3]. Первоначально выходной сигнал G1 Приемника 1 установлен в единицу, обеспечивая один из необходимых для возбуждения нейронов входов, а все компоненты век­тора R установлены в 0; следовательно, в этот момент вектор С идентичен двоичному входному векторуX.

Слой распознавания. Слой распознавания осуществля­ет классификацию входных векторов. Каждый нейрон в слое распознавания имеет соответствующий вектор весов Вj.Только один нейрон с весовым вектором, наиболее соот­ветствующим входному вектору, возбуждается; все осталь­ные нейроны заторможены. Как показано на рис. 8.3, нейрон в распознающем слое имеет максимальную реакцию, если вектор С, явля­ющийся выходом слоя сравнения, соответствует набору его весов, следовательно, веса представляют запомненный образ или экземпляр для категории входных векторов. Эти веса являются действительными числами, а не двоичными величинами. Двоичная версия этого образа также запоми­нается в соответствующем наборе весов слоя сравнения (рис. 8.2); этот набор состоит из весов связей, соеди­няющих определенные нейроны слоя распознавания, один вес на каждый нейрон слоя сравнения. В процессе функционирования каждый нейрон слоя распознавания вычисляет свертку вектора собственных весов и входного вектора С. Нейрон, имеющий веса, наи­более близкие вектору С, будет иметь самый большой выход, тем самым выигрывая соревнование и одновременно затормаживая все остальные нейроны в слое. Как показано на рис. 8.4, нейроны внутри слоя распознавания взаимно соединены в латерально-тормозящую сеть. В простейшем случае (единственном, рассмотренном в данной работе) предусматривается, что только один нейрон в слое возбуждается в каждый момент времени (т.е. только нейрон с наивысшим уровнем активации будет иметь единичный выход; все остальные нейроны будут иметь нулевой выход). Эта конкуренция реализуется вве­дением связей с отрицательными весами lij с выхода каждого нейрона ri. на входы остальных нейронов. Таким образом, если нейрон имеет большой выход, он тормозит все остальные нейроны в слое. Кроме того, каждый нейрон имеет связь с положительным весом со своего выхода на свой собственный вход. Если нейрон имеет единичный выходной уровень, эта обратная связь стремится усилить и поддержать его.

Приемник 2. G2, выход Приемника 2, равен единице, если входной вектор Х имеет хотя бы одну единичную компоненту. Более точно, G2 является логическим ИЛИ от компонента вектора X.

Приемник 1. Как и сигнал G2, выходной сигнал G1 Приемника 1 равен 1, если хотя бы одна компонента дво­ичного входного вектора Х равна единице; однако если хотя бы одна компонента вектора R равна единице, G1 устанавливается в нуль. Таблица, определяющая эти соот­ношения:

Сброс. Модуль сброса измеряет сходство между век­торами Х и С. Если они отличаются сильнее, чем требует параметр сходства, вырабатывается сигнал сброса возбуж­денного нейрона в слое распознавания. В процессе функционирования модуль сброса вычисля­ет сходство как отношение количества единиц в векторе С к их количеству в векторе X. Если это отношение ниже значения параметра сходства, вырабатывается сигнал сброса.

Функционирование сети APT в процессе классификации

Процесс классификации в APT состоит из трех основ­ных фаз: распознавание, сравнение и поиск. Фаза распознавания. В начальный момент времени входной вектор отсутствует на входе сети; следователь­но, все компоненты входного вектора Х можно рассматри­вать как нулевые. Тем самым сигнал G2 устанавливается в О и, следовательно, в нуль устанавливаются выходы всех нейронов слоя распознавания. Поскольку все нейроны слоя распознавания начинают работу в одинаковом состоянии, они имеют равные шансы выиграть в последующей конкурен­ции. Затем на вход сети подается входной вектор X, который должен быть классифицирован. Этот вектор должен иметь одну или более компонент, отличных от нуля, в результате чего и G1, и G2 становятся равными единице. Это «подкачивает» нейроны слоя сравнения, обеспечивая один из двух единичных входов, необходимых для возбуж­дения нейронов в соответствии с правилом двух третей, тем самым позволяя нейрону возбуждаться, если соответс­твующая компонента входного вектора Х равна единице. Таким образом, в течение данной фазы вектор S в точнос­ти дублирует вектор X. Далее для каждого нейрона в слое распознавания вычисляется свертка вектора его весов Вj и вектора С (рис. 8.4). Нейрон с максимальным значением свертки имеет веса, наилучшим образом соответствующие входному вектору. Он выигрывает конкуренцию и возбуждается, одновременно затормаживая все остальные нейроны этого слоя. Таким образом, единственная компонента rj вектора R (рис. 8.1) становится равной единице, а все остальные компоненты становятся равными нулю. В результате, сеть APT запоминает образы в весах нейронов слоя распознавания, один нейрон для каждой категории классификации. Нейрон слоя распознавания, веса которого наилучшим образом соответствуют входному вектору, возбуждается, его выход устанавливается в единичное значение, а выходы остальных нейронов этого слоя устанавливаются в нуль.

Фаза сравнения. Единственный возбужденный в слое распознавания нейрон возвращает единицу обратно в слой сравнения в виде своего выходного сигнала rj. Эта единственная единица может быть визуально представлена в виде «веерного» выхода, подающегося через отдельную связь с весом tij на каждый нейрон в слое сравнения, обеспечивая каждый нейрон сигналом рj, равным величине tji (нулю или единице) (рис. 8.5).

Алгоритмы инициализации и обучения построены таким образом, что каждый весовой вектор Тj. имеет двоичные значения весов; кроме того, каждый весовой вектор Вj представляет собой масштабированную версию соответству­ющего вектора Тj. Это означает, что все компоненты Р (вектора возбуждения слоя сравнения) также являются двоичными величинами. Так как вектор R не является больше нулевым, сиг­нал G1 устанавливается в нуль. Таким образом, в соот­ветствии с правилом двух третей, возбудиться могут только нейроны, получающие на входе одновременно едини­цы от входного вектора Х и вектора Р. Другими словами, обратная связь от распознающего слоя действует таким образом, чтобы установить компо­ненты С в нуль в случае, если входной вектор не соот­ветствует входному образу, т.е. если Х и Р не имеют совпадающих компонент. Если имеются существенные различия между Х и Р

(малое количество совпадающих компонент векторов), несколько нейронов на фазе сравнения будут возбуждаться и С будет содержать много нулей, в то время как Х со­держит единицы. Это означает, что возвращенный вектор Р не является искомым и возбужденные нейроны в слое рас­познавания должны быть заторможены. Это торможение производится блоком сброса (рис. 8.1), который сравни­вает входной вектор Х и вектор С и вырабатывает сигнал сброса, если степень сходства этих векторов меньше некоторого уровня. Влияние сигнала сброса заключается в установке выхода возбужденного нейрона в нуль, отключая его на время текущей классификации.


Страница: