Нейрокомпьютерные системы
Рефераты >> Программирование и компьютеры >> Нейрокомпьютерные системы

ЕМКОСТЬ ПАМЯТИ

Как и сети Хопфилда, ДАП имеет ограничения на максимальное количество ассоциаций, которые она может точно воспроизвести. Если этот лимит превышен, сеть может выработать неверный выходной сигнал, воспроизводя ассоциации, которым не обучена. В работе [9] приведены оценки, в соответствии с которыми количество запомненных ассоциаций не может превышать количества нейронов в меньшем слое. При этом предполагается, что емкость памяти максимизирована посредством специального кодирования, при котором коли­чество компонент со значениями +1 равно количеству компонент со значениями -1 в каждом биполярном векторе. Эта оценка оказалась слишком оптимистичной. Работа [13] по оценке емкости сетей Хопфилда может быть легко расширена для ДАП. Можно показать, что если L векторов выбраны случайно и представлены в указанной выше форме, и если L меньше чем n /(2 1og2n), где п - количество нейронов в наименьшем слое, тогда все запомненные обра­зы, за исключением «малой части», могут быть восстанов­лены. Например, если п = 1024, тогда L должно быть меньше 51. Если все образы должны восстанавливаться, L должно быть меньше n /(2 1og2n), то есть меньше 25. Эти, скорее озадачивающие, результаты показывают, что боль­шие системы могут запоминать только умеренное количест­во ассоциаций. В работе [7] показано, что ДАП может иметь до 2n стабильных состояний, если пороговое значение Т выбира­ется для каждого нейрона. Такая конфигурация, которую авторы назвали негомогенной ДАП, является расширением исходной гомогенной ДАП, в которой все пороги были нулевыми. Модифицированная передаточная функция нейрона принимает в этом случае следующий вид:

OUTi(n+l)=l, если NETi(n)>Ti, OUTi(n+l)=l, если NETi(n)<Ti, OUTi(n+l)= OUTi(n), если NETi(n)=Ti,

где OUTi(t) - выход нейрона i в момент времени t. Посредством выбора соответствующего порога для каждого нейрона количество стабильных состояний может быть сделано любым в диапазоне от 1 до 2, где п есть количество нейронов в меньшем слое. К сожалению, эти состояния не могут быть выбраны случайно; они определя­ются жесткой геометрической процедурой. Если пользова­тель выбирает L состояний случайным образом, причем L меньше (0,68)n2/{[log2(n)]+4}2, и если каждый вектор имеет 4 + log2n компонент, равных +1, и остальные, равные -1, то можно сконструировать негомогенную ДАП, имеющую 98% этих векторов в качестве стабильных состо­яний. Например, если п = 1024, L должно быть меньше 3637, что является существенным улучшением по сравнению с гомогенными ДАП, но это намного меньше 21024 возмож­ных состояния. Ограничение количества единиц во входных векторах представляет серьезную проблему, тем более, что теория, которая позволяет перекодировать произвольный набор векторов в такой "разреженный" набор, отсутствует. Возможно, однако, что еще более серьезной является проблема некорректной сходимости. Суть этой проблемы заключается в том, что сеть может не производить точных ассоциаций вследствие природы поля притяжения; об ее форме известно очень немногое. Это означает, что ДАП не является ассоциатором по отношению к ближайшему сосед­нему образу. В действительности она может производить ассоциации, имеющие слабое отношение ко входному векто­ру. Как и в случае гомогенных ДАП, могут встречаться ложные стабильные состояния и немногое известно об их количестве и природе. Несмотря на эти проблемы, ДАП остается объектом интенсивных исследований. Основная привлекательность ДАП заключается в ее простоте. Кроме того, она может быть реализована в виде СБИС (либо аналоговых, либо цифровых), что делает ее потенциально недорогой. Так как наши знания постоянно растут, ограничения ДАП могут быть сняты. В этом случае как в экспериментальных, так и в практических приложениях ДАП будет являться весьма перспективным и полезным классом искусственных нейрон­ных сетей.

НЕПРЕРЫВНАЯ ДАП

В предшествующем обсуждении нейроны в слоях 1 и 2 рассматривались как синхронные, каждый нейрон обладает памятью, причем все нейроны изменяют состояния одновре­менно под воздействием импульса от центральных часов. В асинхронной системе любой нейрон свободен изменять состояние в любое время, когда его вход предписывает это сделать. Кроме того, при определении функции активации нейрона использовался простой порог, тем самым образуя разрывность передаточной функции нейронов. Как синхрон­ность функционирования, так и разрывность функций, являются биологически неправдоподобными и совсем необя­зательными; непрерывные асинхронные ДАП отвергают синх­ронность и разрывность, но функционируют в основном аналогично дискретным версиям. Может показаться, что такие системы должны являться нестабильными. В [9] показано, что непрерывные ДАП являются стабильными (однако для них справедливы ограничения емкости, обсуж­денные ранее). В работах [2-5] показано, что сигмоида является оптимальной функцией активации благодаря ее способности усиливать низкоуровневые сигналы, в то же время сжимая динамический диапазон нейронов. Непрерывная ДАП может иметь сигмоидальную функцию с величиной l, близкой к единице, образуя тем самым нейроны с плавной и непре­рывной реакцией, во многом аналогичной реакции их био­логических прототипов. Непрерывная ДАП может быть реализована в виде аналоговой схемы из резисторов и усилителей. Реализация таких схем в виде СБИС кажется возможной и экономически привлекательной. Еще более обещающей является оптичес­кая реализация, рассматриваемая в гл. 9.

АДАПТИВНАЯ ДАП

В версиях ДАП, рассматриваемых до сих пор, весовая матрица вычисляется в виде суммы произведений пар век­торов. Эти вычисления полезны, поскольку они демонстри­руют функции, которые может выполнять ДАП. Однако это определенно не тот способ, посредством которого произ­водится определение весов нейронов мозга. Адаптивная ДАП изменяет свои веса в процессе функ­ционирования. Это означает, что подача на вход сети обучающего набора входных векторов заставляет ее изменять энергетическое состояние до получения резонанса. Постепенно кратковременная память превращается в долго­временную память, настраивая сеть в результате ее функ­ционирования. В процессе обучения векторы подаются на слой А, а ассоциированные векторы на слой В. Один из них или оба вектора могут быть зашумленными версиями эталона; сеть обучается исходным векторам, свободным от шума. В этом случае она извлекает сущность ассоциаций, обучаясь эталонам, хотя «видела» только зашумленные аппроксимации. Так как доказано, что непрерывная ДАП является стабильной независимо от значения весов, ожидается, что медленное изменение ее весов не должно нарушить этой стабильности. В работе [10] доказано это правило. Простейший обучающий алгоритм использует правило Хэбба [8], в котором изменение веса пропорционально уровню активации его нейрона-источника и уровню актива­ции нейрона-приемника. Символически это можно предста­вить следующим образом:

dwij=h*(OUTi OUTj), (7.5)

где dwij - изменение веса связи нейрона j с нейроном j в матрицах W или Wt; OUTi - выход нейрона j слоя 1 или 2; h - положительный нормирующий коэффициент обучения, меньший 1.


Страница: