Нейрокомпьютерные системы
Рефераты >> Программирование и компьютеры >> Нейрокомпьютерные системы

Обсуждение

Комбинированная сеть, использующая обратное рас­пространение и обучение Коши, обучается значительно быстрее, чем каждый из алгоритмов в отдельности, и относительно нечувствительна к величинам коэффициентов. Сходимость к глобальному минимуму гарантируется алгори­тмом Коши, в сотнях экспериментов по обучению сеть ни разу не попадала в ловушки локальных минимумов. Пробле­ма сетевого паралича была решена с помощью алгоритма селективного сжатия весов, который обеспечил сходимость во всех предъявленных тестовых задачах без существенно­го увеличения обучающего времени. Несмотря на такие обнадеживающие результаты, метод еще не исследован до конца, особенно на больших зада­чах. Значительно большая работа потребуется для опреде­ления его достоинств и недостатков.

Глава 6 Сети Хопфилда

Сети, рассмотренные в предыдущих главах, не имели обратных связей, т.е. связей, идущих от выходов сетей и их входам. Отсутствие обратной связи гарантирует безу­словную устойчивость сетей. Они не могут войти в режим, когда выход беспрерывно блуждает от состояния к состоя­нию и не пригоден к использованию. Но это весьма жела­тельное свойство достигается не бесплатно, сети без обратных связей обладают более ограниченными возможнос­тями по сравнению с сетями с обратными связями. Так как сети с обратными связями имеют пути, пере­дающие сигналы от выходов к входам, то отклик таких сетей является динамическим, т.е. после приложения нового входа вычисляется выход и, передаваясь по сети обратной связи, модифицирует вход. Затем выход повторно вычисляется, и процесс повторяется снова и снова. Для устойчивой сети последовательные итерации приводят к все меньшим изменениям выхода, пока в конце концов выход не становится постоянным. Для многих сетей про­цесс никогда не заканчивается, такие сети называют неустойчивыми. Неустойчивые сети обладают интересными свойствами и изучались в качестве примера хаотических систем. Однако такой большой предмет, как хаос, нахо­дится за пределами этой книги. Вместо этого мы сконцен­трируем внимание на устойчивых сетях, т.е. на тех, которые в конце концов дают постоянный выход. Проблема устойчивости ставила в тупик первых ис­следователей. Никто не был в состоянии предсказать, какие из сетей будут устойчивыми, а какие будут нахо­диться в постоянном изменении. Более того, проблема представлялась столь трудной, что многие исследователи были настроены пессимистически относительно возможности ее решения. К счастью, в работе [2] была получена тео­рема, описавшая подмножество сетей с обратными связями, выходы которых в конце концов достигают устойчивого состояния. Это замечательное достижение открыло дорогу дальнейшим исследованиям и сегодня многие ученые зани­маются исследованием сложного поведения и возможностей этих систем. Дж. Хопфилд сделал важный вклад как в теорию, так и в применение систем с обратными связями. Поэтому некоторые из конфигураций известны как сети Хопфилда. Из обзора литературы видно, что исследованием этих и сходных систем занимались многие. Например, в работе [4] изучались общие свойства сетей, аналогичных многим, рассмотренным здесь. Работы, цитируемые в списке лите­ратуры в конце главы, не направлены на то, чтобы дать исчерпывающую библиографию по системам с обратными связями. Скорее они являются лишь доступными источника­ми, которые могут служить для объяснения, расширения и обобщения содержимого этой книги.

КОНФИГУРАЦИИ СЕТЕЙ С ОБРАТНЫМИ СВЯЗЯМИ

На рис. 6.1 показана сеть с обратными связями, состоящая из двух слоев. Способ представления несколько отличается от использованного в работе Хопфилда и дру­гих, но эквивалентен им с функциональной точки зрения, а также хорошо связан с сетями, рассмотренными в преды­дущих главах. Нулевой слой, как и на предыдущих рисун­ках, не выполняет вычислительной функции, а лишь рас­пределяет выходы сети обратно на входы. Каждый нейрон первого слоя вычисляет взвешенную сумму своих входов, давая сигнал NET, который затем с помощью нелинейной функции F преобразуется в сигнал OUT. Эти операции сходны с нейронами других сетей (см. гл.2).

Бинарные системы

В первой работе Хопфилда [6] функция F была просто пороговой функцией. Выход такого нейрона равен единице, если взвешенная сумма выходов с других нейронов больше порога Т., в противном случае она равна нулю. Он вычис­ляется следующим образом:

(6.1)

Состояние сети - это просто множество текущих значений сигналов OUT от всех нейронов. В первоначаль­ной сети Хопфилда состояние каждого нейрона менялось в дискретные случайные моменты времени, в последующей работе состояния нейронов могли меняться одновременно. Так как выходом бинарного нейрона может быть только ноль или единица (промежуточных уровней нет), то теку­щее состояние сети является двоичным числом, каждый бит которого является сигналом OUT некоторого нейрона. Функционирование сети легко визуализируется геоме­трически. На рис. 6.2 а показан случай двух нейронов в выходном слое, причем каждой вершине квадрата соответс­твует одно из четырех состояний системы (00, 01, 10, II). На рис. 6.2 б показана трехнейронная система, представленная кубом (в трехмерном пространстве), имею­щим восемь вершин, каждая из которых помечена трехбито­вым бинарным числом. В общем случае система с п нейро­нами имеет 2n различных состояний и представляется fi-мерным гиперкубом.

Рис. 6.2 а. Два нейрона порождают систему с четырьмя состояниями.

Рис. 6.2 б. Три нейрона порождают систему с восемью состояниями.

Когда подается новый входной вектор, сеть перехо­дит из вершины в вершину, пока не стабилизируется. Устойчивая вершина определяется сетевыми весами, теку­щими входами и величиной порога. Если входной вектор частично неправилен или неполон, то сеть стабилизирует­ся в вершине, ближайшей к желаемой.

Устойчивость

Как и в других сетях, веса между слоями в этой сети могут рассматриваться в виде матрицы W. В работе [2] показано, что сеть с обратными связями является устойчивой, если ее матрица симметрична и имеет нули на главной диагонали, т.е. если Wij = Wji и Wii = 0 для всех i. Устойчивость такой сети может быть доказана с помощью элегантного математического метода. Допустим, что найдена функция, которая всегда убывает при измене­нии состояния сети. В конце концов эта функция должна достичь минимума и прекратить изменение, гарантируя тем самым устойчивость сети. Такая функция, называемая функцией Ляпунова, для рассматриваемых сетей с обратны­ми связями может быть введена следующим образом:

(6.2)

где Е - искусственная энергия сети; wij - вес от выхода нейрона i к входу нейрона j; OUTj - выход нейрона j; Ij - внешний вход нейрона j; Тj - порог нейрона j.


Страница: