Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализаРефераты >> Педагогика >> Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа
сtg (х+p/2), х<p sin х, х<-p/2
у = у =
1/(sin х +1), х³p tg х/(х-7) ³2p
2) Область значений функции.
«Областью значений функции f называется множество, состоящее из всех чисел f(х), таких, что х принадлежит области определения функции f». Четкого обоснования того факта, что областью значений функций у=sin х и у=соs х является отрезок [-1;1] ни в одном из действующих школьных учебников не приводится, а вместо этого рассматриваются неравенства -1 £ sin х £ 1 и -1 £ соs х £ 1, которые выполняются для всех значений х. Однако, отсюда совершенно не следует то, что в область значений данных функций входят все точки отрезка [-1;1]. На этот момент стоит обратить особое внимание, дабы разграничить в умах учащихся два совершенно различных свойства: ограниченность и область значений. Рассмотрим пример.
Рис.4
Функция f(x) в данном случае является ограниченной (выполняются неравенства -1 £ f(x) £ 1), но отрезок [-1;1] не является множеством значений данной функции. Поэтому необходимо все-таки показать тот факт, что любое число из отрезка [-1;1] является значением функции у=sin х (у=соs х) в некоторой точке. Показать это можно хотя бы следующим образом.
Возьмем произвольное действительное число х1 такое, что
-1 £ х1 £ 1. Рассмотрим отрезок [-1;1] принадлежащий оси ОХ и возьмем точку этого отрезка соответствующую х1, восстановим из нее перпендикуляр к оси ОХ. Он пересечет единичную окружность в некоторой точке Рх1 Заметим, что х1 – это абсцисса точки Рх1, а, значит, число х1 является значением функции у=соs х для точки Рх1. (Аналогично для функции у=sin х.)
рис.5
После изучения области значений целесообразно рассмотреть свойство ограниченности функций у=соs х и у=sin х и провести взаимосвязь между этими свойствами не только для тригонометрических, но и для других классов функций.
3) Четность и нечетность.
При изучении свойств четности и нечетности тригонометрических функций необходимо четко обосновать тот факт, что sin(-х) = -sin(х), a cos(-х) = cos(х) для любых действительных значений х. Чаще всего обоснование этого факта сводится к симметричности точек окружности, соответствующих числам или углам t и – t в зависимости от того, на каком этапе происходит обоснование. «Если числу t соответствует точка М числовой окружности, то числу –t соответствует точка Р, симметричная точке М относительно горизонтального диаметра окружности (то есть относительно оси абсцисс). У таких точек одна и та же абсцисса, а ординаты равны по модулю, но отличаются знаком. Следовательно, sin(-t) = -sin(t), a cos(-t) = cos(t)» (см. [16]).
Заметим, что факт симметричности точек t и – t не является очевидным, а значит, сам нуждается в обосновании, провести которое можно, например, рассмотрев треугольник МОР. Обозначим точку пересечения отрезка МР с осью ОХ за В. Тогда треугольник МОР равнобедренный (ОМ = ОР как радиусы одной окружности), луч ОВ является биссектрисой угла МОР, а, следовательно, и высотой и медианой треугольника МОР. Тогда точки М и Р действительно будут симметричными относительно оси ОХ по определению. Это и позволяет сделать вывод о значениях синуса и косинуса противоположных углов. После этого обоснование равенств tg (-t) =-tg (t) и ctg (-t) = -ctg (t) не составит никакой трудности.
Далее следует еще раз обратить внимание учащихся на следующий факт. В определениях четных и нечетных функций в явном виде не указано то, что такие функции имеют область определения, симметричную относительно начала координат, но этот факт часто оказывается полезным при решении задач типа «Докажите, что функция у= sin Öx, не является ни четной, ни нечетной». Используя вышеупомянутый факт и определив, что область определения данной функции не является симметричной относительно начала координат, сразу можно сделать вывод о том, что функция у=sinÖx, действительно, не является ни четной, ни нечетной, не рассматривая соответствующих уравнений.
Так же полезно определять четность функций, заданных кусочно. Например, определить являются ли следующие функции четными или нечетными:
Sin (x), если х ³0 Соs(x/2), если х ³ p
f(x)= f(x)= p2 + х2, если -p < х < p
Соs(x), если х<0 Соs(x/2), если х £ p
4) Монотонность.
При рассмотрении свойства монотонности тригонометрических функций в большинстве действующих учебников (кроме [11]) не приводится четкого доказательства возрастания функций y=sin x и y=соs x на промежутках [-p/2;p/2] и [-p;0] соответственно, а обоснование этих фактов проводится с опорой на числовую окружность: «При движении точки по четвертой и по первой четвертям окружности в положительном направлении ( от -p/2 до p/2 ) ее ордината постепенно увеличивается (от -1 до 1), значит функция y=sin x является возрастающей на этом промежутке» (см. [16]). Более строгое доказательство этого факта приводится с опорой на формулу разности синусов и применимо в случае, когда тригонометрические преобразования изучаются раньше тригонометрических функций, то есть когда формула разности синусов к моменту исследования тригонометрических функций является уже известной (см. [11]). «Пусть
-p/2 £ х1 < х2 £ p/2,
применяя формулу разности синусов находим
sin х2 - sin х1 = 2 соs [(х1 +х2)/2]*sin [(х2 – х1)/2].
Из неравенства -p/2 £ х1 < х2 £ p/2 следует, что
-p/2 < (х1 + х2)/2 < p/2 и 0 < (х2 – х1)/2< p/2,
поэтому соs(х1+х2)/2 > 0 и sin(х2-х1)/2 > 0, а следовательно, sin х2 - sin х1> 0 то есть sin х2 > sin х1»(см. [11]). При этом учителю следует обратить внимание на пояснение того, как из неравенства -p/2 £ х1 < х2 £ p/2 получаются неравенства -p/2 < (х1+х2)/2 < p/2 и 0 < (х2–х1 )/2 < p/2.
Это целесообразно проиллюстрировать, изобразив отрезок [-p/2;p/2]. Заметим, что (х1+х2)/2 не что иное, как среднее арифметическое чисел х1 и х2, а, следовательно, принадлежит отрезку [х1;х2], который, в свою очередь, целиком лежит в отрезке [-p/2;p/2], то есть первое неравенство имеет место. Гораздо большую трудность вызывает обоснование второго неравенства. Заметим, что модуль разности |х2-х1| - это расстояние между точками х1 и х2, а так как обе точки принадлежат одному отрезку [-p/2;p/2], то расстояние между ними не может превышать длины этого отрезка, то есть p. С другой стороны модуль – функция неотрицательная, более того, в данном случае положительная, так как х1 и х2 различны. Имеем 0 < |х2-х1| £ p, но так как х1 < х2, то |х2-х1| = (х2-х1). Разделив все части неравенства на 2, получим доказываемое неравенство.