Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа
Рефераты >> Педагогика >> Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа

11. Колмогоров, А.Н. Алгебра и начала анализа 10-11 [Текст] /А.Н. Колмогоров// Учебник - Москва: Просвещение, 1999.

12. Крамор, В.С. Тригонометрические функции [Текст] / Крамор В.С., Михайлов П.А. – Москва: Просвещение, 1979.

13. Лященко, Е.И. Лабораторные и практические работы по методике преподавания математики [Текст] /Лященко Е.И. – Москва: Просвещение, 1988.

14. Мишин, В.И. Методика преподавания математики в средней школе (Частная методика). [Текст] / Мишин, В.И. - Москва: Просвещение, 1987.

15. Мордкович, А.Г. Методические проблемы изучения тригонометрии в общеобразовательной школе [Текст] / Мордкович А.Г. //Математика в школе. 2002 - № 6 – с.32-38.

16. Мордкович, А.Г. Алгебра и начала анализа 10-11 [Текст] /А.Г. Мордкович// Учебник- Москва: Мнемозина, 2003.

17. Панчишкин, А.А. Тригонометрические функции в задачах [Текст] / Панчишкин А.А., Шавгулидзе Е.Т. - Москва: Наука, 1986.

18. Раббот, Ж. Тригонометрические функции [Текст] / Раббот Ж. // Квант. 1972- №5- с. 36-38.

19. Синакевич, С.В. Тригонометрические функции [Текст] / Синакевич С.В. - Москва: Учпедгиз, 1959.

20. Смирнова, И.М. Необычный способ получения синусоиды [Текст] / Смирнова И.М. // Математика в школе. 1993-№3- с.56-58.

21. Цукарь, А.Я. Упражнения практического характера по тригонометрии [Текст] / Цукарь А.Я. //Математика в школе. 1993-№3- с 12-15.

22. Шаталов, В.Ф. Методические рекомендации для работы с опорными сигналами по тригонометрии [Текст] / Шаталов В.Ф. - Москва: Новая школа, 1993.

23. Шенфельд, Х. Что общего между заходом солнца и функцией y=sin х [Текст] /Шенфельд Х. // Математика в школе. 1993-№2- с.75-77.

Приложение

Факультатив «Тригонометрия помогает алгебре».

Известно, что «тот или иной материал усваивается школьниками не тогда, когда этот материал является целью обучения, а тогда, когда он становится средством для решения других задач»[10]. Поэтому целесообразно показать учащимся то, как можно применять свойства тригонометрических функций и тригонометрические тождества при решении, например, алгебраических задач.

Цели:

1) Провести межпредметные связи между тригонометрией и алгеброй.

2) Способствовать формированию умений решать некоторые виды уравнений алгебры с помощью тригонометрических подстановок.

Место изучения.

Этот факультатив желательно проводить после того, как изучены все разделы тригонометрии.

Ход факультатива:

Учащимся предлагается попробовать решить уравнение самостоятельно. Попробовав выполнить стандартное возведение в квадрат обеих частей, учащиеся натыкаются на уравнение 6-ой степени, решение которых в школьном курсе не рассматривается. Обратив внимание учащихся, на то, что областью допустимых значений переменной данного уравнения является отрезок [-1;1], учитель предлагает вспомнить изученные функции, областью значений которых является данный отрезок. После чего делается вывод: если из условия задачи следует, что допустимые значения переменной x определяются неравенством |x|≤1, то удобны замены х=sinα, α, или х=cosα, α, причем какую из них выбрать, зависит от конкретной задачи.

Учащиеся совместно с учителем прорешивают данное уравнение.

«Поскольку функция 4х3-3х существует при любых значениях х, найдем область определения функции f(x)= : 1- х2 ≥0, значит х. Введем замену х=cosα. Нас интересуют все значения этой функции. Выберем для удобства любой отрезок, на котором функция косинус принимает все свои значения, например отрезок .

Подставим х=cosα в уравнение, получим

Так как α, то sinα ≥0 и можно опустить модуль:

Условию αудовлетворяют три значения α1=, α2=, α3=.

x1=cos α1=cos=,

x2=cos α2=cos=-sin= =

x3= cos α3=cos =-cos=.

Ответ: x1=, x2=, x3=.

Пример 2. Сколько корней на отрезке [0;1] имеет уравнение

При отсутствии лишнего времени решение лучше вынести в качестве домашнего задания. Если уровень подготовки класса не очень высок, то учитель может сделать подсказку «Замена х=cosα, αставит в соответствие каждому значению х на [0;1] ровно одно значение α. Значит, число решений исходного уравнения на [0;1] равно числу решений соответствующего уравнения на , причем так как х¹0 и х¹1, то можно взять α». Уравнение примет вид

Условию αудовлетворяют четыре значения α1=, α2=, α3=, α4=.


Страница: