Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа
Рефераты >> Педагогика >> Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа

Вообще говоря, определив функции синус и косинус, мы уже не нуждаемся в числовой окружности как средстве для введения понятий тангенса и котангенса. Но раз уж мы взялись работать с этой моделью, то неплохо бы показать, как определить функции тангенс и котангенс, используя только их геометрическое определения (заметим, что выражения «тангенс угла a – это отношение синуса a к косинусу a» и « котангенс угла a – это отношение косинуса a к синусу a» не являются определениями – это уже свойства).

Использование второго подхода поможет нам не только на этапе изучения самих тригонометрических функций, но и на этапе решения тригонометрических уравнений и неравенств. Поэтому целесообразнее использовать именно второй подход, а определение тангенса a как отношение синуса a к косинусу a рассматривать как свойство.

Итак, мы ввели понятия всех тригонометрических функций (которые предусмотрены программой). Но перед тем, как перейти к их исследованию и построению графиков, необходимо проследить, чтобы у учащихся были отработаны следующие навыки:

ü Нахождение значений всех тригонометрических функций в «главных» точках.

(Для лучшего запоминания значений тригонометрических функций можно использовать следующую вспомогательную таблицу:

a

0

p/6

p/4

p/3

p/2

sina

cosa

Здесь значения синуса и косинуса представлены в наиболее удобной для восприятия и запоминания форме.)

ü Решение простейших тригонометрических уравнений и неравенств.

ü Определение знаков тригонометрических функций в заданных точках.

ü Упрощение выражений с использованием основного тригонометрического тождества и формул приведения.

ü Нахождение по заданному значению одной из тригонометрических функций значений всех остальных тригонометрических функций.

Приобретая вышеперечисленные навыки, учащиеся тем самым получают арсенал средств, достаточный для более основательного исследования и построения графиков тригонометрических функций.

Работа по построению графиков и исследованию функций может проводиться двумя способами:

1) Сначала по точкам строится график, а затем с помощью графической интерпретации исследуются все свойства функции

2) Построение графика происходит после исследования функции, а наглядные представления о свойствах учащиеся получают, анализируя поведение функций на числовой окружности.

Наиболее целесообразно применять второй подход, так как при этом подходе, во-первых, все свойства тригонометрических функций иллюстрируются на обеих моделях (на числовой окружности и на графике), а, во-вторых, это является хорошей подготовительной работой для дальнейшего обучения исследованию функций и построению графиков с помощью производной.

Несмотря на то, что анализируя поведение функции на числовой окружности, мы всего лишь иллюстрируем некоторое свойство, не стоит забывать, что иногда «доказательство» с помощью окружности является единственным доступным для школьников способом обоснования некоторых фактов. Хотя некоторые случаи все-таки требуют более четкого обоснования формулируемых утверждений.

Остановимся подробнее на исследовании тригонометрических функций.

1) Область определения.

«Областью определения функции действительного переменного называется множество действительных значений аргумента, при которых функция принимает действительные же значения».

Область определения функций у=sin x и у=соs x – множество всех действительных чисел. Этот факт достаточно легко обосновывается с помощью окружности: каждому действительному числу х соответствует точка на окружности Рх. Каждой точке Рх соответствуют ее абсцисса и ордината, каждая из них - это действительное число. Значит, значения функций у=sin x и у=соs x для любого действительного х будут действительными числами.

У функций у=tg х и у=сtg х область определения имеет некоторые ограничения. Обосновать это свойство можно исходя из того факта, что

tg х = sin x/ соs x. Тогда областью определения функции у=tg х будут все действительные числа, за исключением нулей функции у=соs x. Этот же самый факт можно обосновать и с помощью окружности:

рис.3

любому действительному числу х соответствует точка на окружности Рх. Если х ¹ p/2+pк, кÎZ, то эта точка имеет координаты, отличные от (0;1) и (0;-1), тогда через точки О и Рх. можно провести прямую, которая пересекает касательную к окружности, проходящую через точку (1;0), в некоторой точке Тх. Эта точка имеет ординату, которая является действительным числом. То есть в таких точках функция у=tg х будет принимать действительные значения. Если же х = p/2+pк, кÎZ, то прямая ОРх. будет совпадать с осью ОУ, а, следовательно, будет параллельна касательной к окружности. В этом случае мы не сможем найти точку Тх и ее ординату, а, значит, в этих точках функция у=tg х будет не определена. Таким образом, делаем вывод , что Дtg x =R/{p/2+pк }, кÎZ. Для функции у=сtg х рассуждения аналогичны, а, значит, учащиеся вполне могут провести их самостоятельно.

Область определения как свойство функций является ко времени изучения тригонометрии уже достаточно хорошо изученным, а процесс ее нахождения уже перешедшим из разряда умений в разряд навыков. Тем не менее при изучении тригонометрических функций стоит еще раз обратить внимание на отыскание области определения в особенности функций типа: у = сtg х * tg х; у=(sin х*соs х)/ сtg х, а также кусочно-заданных функций


Страница: