Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа
Рефераты >> Педагогика >> Методика преподавания темы Тригонометрические функции в курсе алгебры и начал анализа

Отметим, что изучение тригонометрических функций в школьном курсе имеет некоторые особенности. Во-первых, до изучения тригонометрических функций, рассматривались функции вида у=f(x), где х и у – некоторые действительные числа, здесь же - углу ставится в соответствие число, что является несколько непривычным для учащихся. Кроме того, раньше все функции задавались формулами, в которых явным образом был указан порядок действий над значениями аргумента для получения значений функции. Теперь же учащиеся сталкиваются с функциями, заданными таблично.

Таким образом, изучая тригонометрические функции, учащиеся лучше начинают разбираться в сущности самого понятия функции. Они начинают осознавать, что функцией может быть зависимость между любыми множествами объектов, даже если они имеют различную природу (лишь бы каждому значению аргумента соответствовало единственное значение функции).

§ 2. Анализ изложения темы «Тригонометрические функции» в различных школьных учебниках

В настоящее время вопросы тригонометрии изучаются в 10-11 классах в рамках 85 - часового курса "Алгебра и начала анализа". В разных вариантах тематических планов, опирающихся на учебники разных авторов, отводится от 15 до 28 часов; при этом в основном ставятся следующие цели:

- ввести понятие синуса, косинуса, тангенса и котангенса для произвольного угла;

- систематизировать, обобщить и расширить уже имеющиеся у учащихся знания о тригонометрических функциях углового аргумента;

- изучить свойства тригонометрических функций;

- научить учащихся строить графики тригонометрических функций и выполнять некоторые преобразования этих графиков.

Проанализируем с точки зрения реализации вышеперечисленных целей те учебники, которые наиболее распространенны в общеобразовательных школах, а именно учебники [16], [2], [3], [11].

Прежде всего, отметим некоторые особенности этих учебников как методических пособий в целом, а не по данной теме. Вообще, данные учебники дают цельное и полное представление о школьном курсе алгебры и начала анализа, отвечают требованиям обязательного минимума содержания образования. Но каждый из них имеет свои особенности. Учебник [16], например, отличается более доступным для школьников, по сравнению с остальными учебниками, изложением теоретического материала, которое ведется очень подробно, обстоятельно и достаточно живым литературным языком, наличием большого числа примеров с подробными решениями. Построение всего курса осуществляется на основе приоритетности функционально-графической линии. Учебник [11] имеет прикладную направленность, содержание отличается большей научностью и близостью к математическому анализу, язык изложения в большей мере научен, чем доступен. Теоретический материал изложен достаточно кратко и лаконично. Учебник [3] также имеет прикладную направленность, но в отличие от [11] ориентирован на физические приложения математических знаний и умений. В конце учебника представлены несколько лабораторных работ, например, «Построение математической модели механического движения». В конце учебника весь изученный материал представлен в виде схем и таблиц, что удобно не только ученику при подготовке к какому-либо контрольному мероприятию, но и учителю при подготовке к уроку или к системе уроков. Также среди достоинств этого учебника стоит отметить и тот факт, что каждая глава открывается вводной беседой, подготавливающей появление новых основных понятий, и заключительной беседой, которая включает в себя сведения, полезные для учащихся, интересующихся математикой.

Ну, а учебник [2] по сравнению с другими изобилует большим количеством цитат и шуточных математических рисунков. Это, несомненно, развивает математический кругозор учащихся, но, что касается содержательной стороны этого учебника, то, по моему мнению, он больше подойдет для обучения математике в профильных (не математических) классах.

Перейдем к анализу изложения конкретной темы «Тригонометрические функции» в данных учебниках. Напомним, что в школьном курсе математики в разные годы использовались разные варианты введения тригонометрических функций: при помощи тригонометрического круга, при помощи проекции и некоторые другие.

В современных учебных пособиях предпочтение отдается определению с помощью единичной окружности. При этом только в [16] уделено достаточное внимание работе с числовой окружностью как с самостоятельным объектом изучения, и это является одним из достоинств этого учебника.

Слишком поспешное введение понятий синуса и косинуса «по окружности» приводит к трудностям при дальнейшем обучении: многие учащиеся испытывают затруднения с геометрическим истолкованием «тригонометрического языка». Таким образом, не получается создать надежный фундамент для успешного изучения материала.

В учебнике [16] на работу с числовой окружностью отводится 5 часов, что составляет почти 20% от 28 запланированных часов на изучение всей темы «Тригонометрические функции». Вообще говоря, здесь рассматриваются две математические модели: «числовая окружность» и «числовая окружность на координатной плоскости». То есть учащиеся обучаются работать одновременно в двух системах координат: в прямоугольной декартовой и криволинейной. Это поможет им в дальнейшем, когда понятия синуса и косинуса угла будут вводиться через координаты.

Здесь не только четко выделяется алгоритм построения точки на числовой окружности, но и проводится аналогия с числовой прямой, с указанием основных сходств и различий в построении точки на окружности и на прямой. Неплохо в учебнике [16] мотивируется и само введение числовой окружности: «В реальной жизни двигаться приходится не только по прямой, но и по окружности. Будем считать беговую дорожку стадиона окружностью…». К тому же, уже на этапе изучения числовой окружности в неявном виде происходит подготовка к решению простейших тригонометрических уравнений и неравенств.

Например, рассматриваются задания типа: «Найти на числовой окружности точки с ординатой у = 1/2 и записать, каким числам t они соответствуют», «Найти на числовой окружности точки с абсциссой х < 1/2 и записать, каким числам t они соответствуют».

Итак, в учебнике [16], в отличие от остальных учебников, проводится достаточно хорошая пропедевтическая работа для введения тригонометрических функций.

В учебнике [3] также присутствуют элементы работы с числовой окружностью, но не в таком количестве как в [16]. Здесь выделяется отдельный параграф «Вращательное движение и его свойства», в котором рассматриваются такие вопросы как построение точки по заданной мере угла и свойства вращательного движения.

В учебнике [11] в качестве подготовительной работы для введения тригонометрических функций выступает лишь повторение следующих вопросов:

- радианная мера угла (измерение углов в радианах, таблица значений тригонометрических функций (рассматривается исходя из геометрических соображений)),

- основные формулы тригонометрии (основное тригонометрическое тождество, формулы суммы и разности двух аргументов, формулы приведения, формулы суммы и разности синусов и косинусов, формулы двойного и половинного аргументов).


Страница: