Лекции по автоматике
Рефераты >> Радиоэлектроника >> Лекции по автоматике

2. Линейно-нарастающее (с постоянной скоростью) воздействие.

где u(t) – линейная функция времени.

3. Параболическое (с постоянным ускорением) воздействие.

где

4. Синусоидальное (качка) воздействие.

5. Воздействия в виде степенных функций времени.

изображение по Лапласу степенных функций времени имеет вид

При исследовании точности работы, например, следящих систем копировально-фрезерных станков и станков с программным управлением в установившихся режимах широко используются управляющие воздействия в виде степенных функций времени.

В нормальных режимах работы управляющее воздействие в виде линейной функции времени u(t)=A×t×1(t) имеет место, например, в следящих системах копировально-фрезерных станков при постоянном угле копирования, в следящих системах станков с программным управлением – при обработке изделия с постоянной скоростью по одной или двум координатам. Управляющее воздействие в виде квадратичной степенной функции может быть, например, при обработке изделия с постоянным ускорением по одной из координат.

В ряде случаев более сложные воздействия на систему можно представить в виде суммы S степенных функций времени

6. Дельта-функция (единичная импульсная функция, функция Дирака).

Рассмотрим функцию

Если эту функцию трактовать как силу, действующую за промежуток времени от 0 до h, а в остальное время равную нулю, то, очевидно, импульс этой силы будет равен единице. Изображение этой функции будет т.е.

В механике бывает удобно рассматривать силы, действующие очень короткий промежуток времени, как силы действующие мгновенно, но имеющие конечный импульс. Поэтому вводят функцию d(t) как предел функции s1(t,h) при

Следует иметь в виду, что d(t) не есть функция в обычном понимании. Многие авторы-физики функцию d(t) называют функцией Дирака.

Эту функцию называют единичной импульсной функцией или дельта-функцией. Естественно положить

L – изображение функции d(t) определим как предел изображения функции s1(t,h) при (здесь воспользовались правилом Лопиталя для нахождения предела). Итак,

Линейные непрерывного действия системы автоматического регулирования

В системах непрерывного действия между величинами на входе и выходе всех элементов существует непрерывная функциональная связь. При наличии в системах непрерывного действия только линейных элементов движение системы можно описывать обыкновенными линейными дифференциальными уравнениями, что значительно упрощает её теоретическое исследование.

Линейность характеристик системы регулирования позволяет получить высокую плавность работы, возможность применения разнообразных корректирующих устройств и обеспечивает высокую точность работы системы.

Основными недостатками непрерывных автоматических систем являются: неполное использование мощности исполнительных элементов, малое быстродействие при малых управляющих и возмущающих воздействиях.

Математическое описание САУ

Анализ и синтез САУ проводят по дифференциальным или интегродифференциальным уравнениям, определяющим поведение систем в переходном процессе при действии возмущающих сил или после прекращения их действий.

Уравнения называются уравнениями динамики, если они описывают изменения входящих в них переменных во времени. Из уравнений динамики обычно можно получить уравнения статики, если положить все входящие в них производные и воздействия равными нулю или некоторым постоянным величинам. Уравнения статики описывают поведение систем в установившемся режиме.

Обычно САУ разбивают на отдельные элементы и для каждого из них записывают дифференциальное уравнение, которое составляется на основании физических законов, определяющих протекание процесса в изучаемом элементе. Чаще всего исходными являются законы сохранения вещества и энергии, записанные применительно к рассматриваемому явлению.

Для большого диапазона изменения регулируемой величины уравнение статики обычно нелинейно. Для малых отклонений регулируемой величины можно пользоваться линеаризованными уравнениями, а для больших отклонений – нелинейными уравнениями.

Реальные элементы САУ почти всегда имеют нелинейные характеристики, обусловленные ограничением мощности, ограничением координат, зазорами, гистерезисом и т. д. Очевидно, что и связь между отдельными координатами элементов с нелинейными характеристиками будет описываться нелинейными дифференциальными уравнениями. Поэтому при составлении уравнений отдельных элементов систем приходится идеализировать их характеристики, т. е. не учитывать некоторые особенности характеристик исследуемых элементов, а также не учитывать отдельные связи, если они не оказывают существенного влияния на работу всей системы. При такой идеализации обычно удаётся упростить дифференциальные уравнения элементов и всей системы и заменить нелинейную связь между координатами линейной связью.

Дифференциальное уравнение общего вида для трёхкоординатной системы имеет вид

Если нелинейная функция F и все её производные однозначны и непрерывны, то при малых отклонениях координат она может быть разложена в ряд Тейлора в окрестности произвольно выбранной точки (n+m+k+3)-мерного пространства (для САР эта точка соответствует установившемуся режиму):

где


Страница: