Классификация живых систем
Соответственно этому типы клеток — монады, диады, триады, тетрады, пентады, гексады и т. п., различающиеся по числу содержащихся в них белоксинтезирующих единиц, при условии их одно-ядерности все являются монобионтами, поскольку их генетическая структура остается строго централизованной благодаря наличию в каждой из них единственного ядра.
Плоидностъ одноядерной клетки, т. е. наличие в ней одной, двух или же четырех и более копий генома, также не меняет ее общей централизованной информационной структуры, характерной для монобионтов.
Диплоидность создает, как известно, значительные биологические преимущества, позволяя, в частности, нейтрализовать многие вредные мутации, поскольку большинство из них рецессивны и; в диплоидных клетках подавляются доминантными нормальными аллелями. За счет диплоидности достигается, следовательно, стабилизация, генетической программы развития клетки при сохранении строго моноцентрического характера ее информационной структуры. Наличие этого-защитного дублирующего механизма подчеркивает функциональную целостность диплоидного ядра и подтверждает тем самым принципиальное' тождество моноцентрической информационной структуры гаплоидных и диплоидных клеток.
Полиплоидность особенно обычна у растений. Она способствует увеличению размеров организма и повышает его устойчивость к разного рода неблагоприятным условиям, что, в частности, проявляется в увеличении доли полиплоидных видов растений в арктических и высокогорных областях. Например, доля полиплоидных видов во всей наземной растительности увеличивается с 37% на Кикладах и 38% в Алжире до 76% на Шпицбергене и 86% в Северной Гренландии. Полиплоидность изменяет, следовательно, некоторые свойства ядра как информационного центра клетки, однако не нарушает при этом моноцентрического характера ее общей информационной структуры: при любом уровне плоидности клетка остается одноядерной и, следовательно, генетически моноцентричной.
Известные различия между гаплоидными, диплоидными и полиплоидными клетками имеются в делимости их ядер, однако эти различия-не касаются генетического моноцентризма клеток. Например, только для-полиплоидной клетки возможен такой саособ деления, при котором ее-высокополиплоидное ядро делится на некоторое число ядер с более низко» плоидностью и образуется соответствующее число дочерних клеток, как. это наблюдается, например, у некоторых радиолярий.
Таким образом, диплоидность и полиплоидность способствуют повышению жизнеспособности организма путем увеличения его размеров и? повышения стабильности его генетической системы. Функциональная и структурная целостность ядра с повышением уровня его плоидности не' только не нарушается, но и становится более глубокой и многоплановой, т. е. моноцентризм генетической системы клетки дополняется новыми аспектами. Следовательно, генетический моноцентризм, т. е. функциональная неделимость информационной структуры в равной мере свойственна-всем одноядерным клеткам.— как гаплоидным, так и диплоидным и полиплоидным.
Поэтому все одноядерные одноклеточные, независимо от степени плоидности их ядер, принадлежат к числу монобионтов, т. е. имеют строго-моноцентрическую информационную структуру.
Структурная фрагментированностъ ядра эукариотической клетки' также не нарушает ее генетического моноцентризма, если совокупность всех фрагментов образует функционально неделимый комплекс. Классическим примером такой ситуации может служить ядерный дуализм инфузорий. Два ядра инфузорий — макронуклеус и микронуклеус — имеют различные функции и представляют собою элементы функционально единого, неделимого генетического аппарата, лишь морфологически разделенного на два фрагмента, один из которых ' выполняет функции, связанные с синтезом белка, а другой — генеративные. В связи с этим у инфузорий комплекс из двух ядер-следует, по мнению автора, считать единым морфологически фрагменти-рованным ядром; при наличии одного фрагментированного ядра, т. е. одного макронуклеуса и одного-микронуклеуса, как у Paramecium, генетическая программа инфузории фактически является столь же централизованной, как и у «обычных» одноядерных простейших. Поэтому инфузории также, как и все одноядерные простейшие, относятся к числу монобионтов.
В случае 1 многоядерности одноклеточных эукариот совокупность имеющихся в клетке ядер с функциональной стороны может представлять собою один.из двух возможных вариантов: либо эти ядра образуют функционально неделимый комплекс, т.е. единый морфологически фрагменти-рованный информационный центр, как у Paramecium, либо они относятся друг к другу как идентичные и автономные информационные центры, как у жгутиконосцев из группы Opalinina. В первом случае организм является монобионтом, а во втором — относится к числу метабионтов.
Монобионты — элементарные блоки жизни, простейшие живые системы организменного уровня. Уже на заре биологической эволюции эта элементарная, монобионтная живая система, пройдя первичную, докле-точную фазу своего развития, обрела форму биологической клетки, ставшей основным структурным блоком в последующем агрегатном усложнении живых систем. В иерархическом ряду уровней функциональной организации живых систем монобионтный уровень является, таким образом, самым первым, наиболее низким, и притом первым организменным уровнем организации живого. Ему соответствует и самая простая из возможных — неделимая информационная структура живой системы, материально организованная на субмолекулярном уровне и представленная геномом.
Первый ррганизменный уровень функциональной организации живой системы соответствует ее элементарной организации, которая в функциональном, структурно-энергетическом и информационном отношениях представляет собою минимальный реально возможный вариант. С особенной четкостью это проявляется в моноцентризме информационной структуры системы, что находит конкретное выражение в неделимости ее генетической программы и полной централизации этой программы в масштабах организма-монобионта.
Таким образом, у всех монобионтов — прокариот, одноядерных одноклеточных эукариот и вирусов — программа развития неделима и централизована на генетическом уровне, что принципиально отличает их от всех других организмов.
Адаптивная эволюция клеточных живых систем привела к ряду принципиальных усложнений в их функциональной организации. Централизованный характер программы развития системы при этом сохранился, но принципы и степень этой централизации претерпели существенные изменения.
Если изменения плоидности клетки не нарушают моноцентрического характера ее информационной структуры, то в многоядерной клетке, например у многоядерных одноклеточных жгутиконосцев, генетическая программа уже не является централизованной в масштабах клетки, поскольку каждое из ядер пространственно вполне обособлено. В этом случае централизованный характер собственной программы развития многоядерного одноклеточного организма обусловлен уже не на первичном, т.е. генетическом, уровне, а на уровне межъядерных взаимодействий, которые обеспечивают развитие организма как целостной живой системы. Аналогичное положение характерно для всех цеиоцитных организмов, многоядерные тела которых не разделены на клетки. К их числу относятся, в частности, многоядерные протоплазменные плазмодии слизевиков, примитивные грибы с неоептированным, т. е. ценоцитным, мицелием и сифоновые водоросли. У всех подобных организмов каждое ядро вместе с прилегающей к нему зоной протоплазмы образует энергиду, т. е. в известной мере генетически автономную область, которую можно рассматривать как «сферу влияния» конкретного ядра. Централизация собственной программы развития у таких ценоцитных организмов обеспечивается на основе интеграции генетических программ, содержащихся в отдельных ядрах, т. е. на уровне межъядерных взаимодействий.